×
21.03.2019
219.016.eabf

Результат интеллектуальной деятельности: Способ получения нанокристаллических частиц целлюлозы каталитическим сольволизом в органической среде

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической переработке целлюлозы, в частности к способам получения ультрадисперсных частиц и гидрозолей нанокристаллической целлюлозы, и может быть использовано при производстве органических наночастиц с упорядоченным строением, биосовместимых материалов на их основе, реологических модификаторов и загустителей, наполнителей пластиков, биоразлагаемых полимерных материалов и композитов, стабилизаторов красок, волокон, эмульсий, в фармацевтической, пищевой, парфюмерной и в других областях промышленности. Способ получения нанокристаллических частиц целлюлозы каталитическим сольволизом в органической среде в виде водной дисперсии включает регулируемую деструкцию порошковой целлюлозы, полученной из древесины хвойных или лиственных пород, или льна, или хлопка, выделение, очистку целевого продукта, причем деструкцию осуществляют каталитическим сольволизом целлюлозного сырья в смеси уксусной кислоты, октанола-1 и фосфорновольфрамовой кислоты, при этом фосфорновольфрамовую кислоту берут в количестве 0,2-0,3% мольных относительно ангидроглюкозной единицы целлюлозы, соотношение уксусная кислота/октанол-1 составляет 10:1 объемных частей, процесс деструкции целлюлозы осуществляют при температуре кипения полученной смеси в течение 40 мин, при этом прибавляя каждые 5 мин раствор перекиси водорода в количестве 0,05% от объема жидкости в системе. Технический результат – разработка улучшенного способа получения НКЦ из различных видов целлюлоз с меньшим расходом реагентов и сокращенной продолжительностью процесса декструкции. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к химической переработке целлюлозы, в частности к способам получения ультрадисперсных частиц и гидрозолей нанокристаллической целлюлозы, и может быть использовано при производстве органических наночастиц с упорядоченным строением, биосовместимых материалов на их основе, реологических модификаторов и загустителей, наполнителей пластиков, биоразлагаемых полимерных материалов и композитов, стабилизаторов красок, волокон, эмульсий, в фармацевтической, пищевой, парфюмерной и в других областях промышленности.

Получение на основе целлюлозы микро- и наноразмерных материалов с высоко упорядоченным строением отдельных частиц построено на особенностях её надмолекулярной организации. Подобные дисперсные частицы и системы на их основе - это востребованные и обладающие широким потенциалом применения формы исходного полисахарида – микрокристаллическая и нанокристаллическая целлюлозы (МКЦ и НКЦ соответственно).

Известно, что нанокристаллическая целлюлоза, геометрические размеры частиц которой, хотя бы в одном измерении, не превышают 100 нм, проявляет принципиально новые свойства, которые отсутствуют у целлюлозных материалов с морфологией микрометрового масштаба и выше. НКЦ образуют устойчивые гидрозоли, которые проявляют свойство тиксотропии уже при низких концентрациях; способны к плёнкообразованию. Материалы на основе таких частиц имеют высокую удельную поверхность и прочность; образуют пористые пены и гидрогели с высоким модулем упругости. Эти свойства определяют области применения целлюлозных наноразмерных материалов - получение биоразлагаемых наполнителей для гелей, плёнок, пластиков, средств доставки лекарств, покрытий [Kim J., Shim B. S., Kim H. S., Lee Y., Min S., Jang D., Abas Z., Kim J. Review of nanocellulose for sustainable future materials// International journal of precision engineering and manufacturing – green technology, 2015, Vol. 2, N. 2, P. 197–213; Moon R. J., Martini A., Nairn J., Simonsenf J., Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites // Chem. Soc. Rev., 2011, Vol. 40, N. 7, P. 3941–3994; Воскобойников И.В., Константинова С.А., Коротков А.Н., Гальбрайх Л.С., Иванов В.Ф. Использование нанокристаллической целлюлозы для модифицирования древесно-слоистых пластиков// Химия растительного сырья. 2011. №3. С. 43-46].

Расширенная сырьевая база – распространённость и ботаническое разнообразие растений и других продуцентов целлюлозы, многие из которых культивируются открывает возможность использовать стандартные методы для получения частиц НКЦ с отличающимися в зависимости от происхождения полисахарида кристалличностью, морфологией, агрегативной и термической устойчивостью, оптическими и механическими свойствами [Jonoobi M., Oladi R., Davoudpour Y., Oksman K., Dufresne A., Hamzeh Y., Davoodi R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review // Cellulose (2015) 22:935–969.+ Elazzouzi-Hafraoui S., Nishiyama Y., Putaux J., Heux L., Dubreuil F., Rochas C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose // Biomacromolecules. 2008, 9, 57–65].

Предложены различные методы получения НКЦ, наиболее многочисленная группа которых основывается на применении тех или иных вариантов кислотного гидролиза [RU 2556144, CN 101759807A, US 20100272819A1]. Менее распространены методы радиолиза [RU 2494109], механических и химико-механических воздействий [Liu C., Li B., Haishun D., Lv D., Zhang Y., Yu G., Mu X., Peng H. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods //Carbohydrate Polymers 151 (2016) 716–724], использования флюидов в сверхкритическом состоянии [Novo L. P., Bras J., García A., Belgacem N., Curvelo A. A. S. Subcritical water: a method for green production of cellulose nanocrystals // ACS Sustainable Chem. Eng. 2015. № 3 Vol. 11. P. 2839–2846].

Недостатками использования минеральных кислот, таких как серная и соляная, является образование больших количеств отходов, сложность их регенерирования или утилизации. Кроме того, наиболее распространённые методы с использованием серной кислоты приводят к зачастую нежелательной функционализации поверхности частиц НКЦ серусодержащими группами.

В последнее время возрос интерес к использованию гетерополикислот (ГПК) в качестве катализаторов деструкции целлюлозы. Это вызвано отличительными физико-химическими свойствами ГПК, разнообразием соединений этого класса. Возможностью получения НКЦ по элементному составу более близкому к природной целлюлозе. Значение функции кислотности Гаммета (H0) для растворов ГПК превышает величины, характерные для минеральных кислот, например, H2SO4. ГПК являются весьма прочными, термически устойчивыми соединениями, обладающими высокой растворимостью в кислородсодержащих растворителях.

Известен способ получения НКЦ методом гидролиза целлюлозы в растворе фосфорновольфрамовой кислоты (H3PW12O40, ФВК) [Liu Y., Wang H., Yu G., Yu Q., Li B., Mua X. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid // Carbohydrate polymers. – 2014. - Vol. 110. - № . - P. 415–422]. В результате получены частицы длиной 100-200 нм и устойчивые гидрозоли. Авторы работы [Lu Q., Cai Z., Lin F., Tang L., Wang S., Huang B. Extraction of Cellulose Nanocrystals with a High Yield of 88% by Simultaneous Mechanochemical Activation and Phosphotungstic Acid Hydrolysis // ACS Sustainable Chem. Eng. – 2016. – Vol. 4. - № 4. – P. 2165–2172] предложили способ получения наноразмерных частиц целлюлозы методом механохимического воздействия, ключевая стадия которого состоит в обработке смеси целлюлозы с фосфорновольфрамовой кислотой (ФВК) в шаровой мельнице. По этому методу выделены частицы с длинной (для трёх основных фракций) 200-280 нм и толщиной 30-45 нм. Использование ФВК в комбинации с ультразвуком для получения НКЦ в водной среде описано в работе [Bee S. A. H., Zain S. K., Das R., Centi G. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose // Carbohydrate Polymers 138 (2016) 349–355.]. В качестве исходного материала во всех примерах использовали порошковую целлюлозу (ПЦ). Недостатками этих способов является использование больших мольных избытков ФВК (десяти-стократные избытки относительно ангидроглюкозной единицы целлюлозы), а также длительное протекание процесса гидролиза (до 30 ч), получение частиц толщиной не менее 20 нм.

Наиболее близким к изобретению по технической сущности является способ получения нанокристаллической целлюлозы RU 2620429, который осуществляется путем регулируемой деструкции целлюлозного сырья в смеси ФВК (5-8 мольных % относительно ангидроглюкозной единицы целлюлозы) уксусной кислоты и перекиси водорода, с первоначальной концентрацией перекиси водорода 1-2%. Продукт выделяют в виде водной дисперсии НКЦ с размерами частиц 100-300 нм, толщиной 20-35 нм, и с индексом кристалличности около 0,9. В качестве исходного целлюлозного сырья используют порошковые целлюлозы, полученные на основе растительного материала различного ботанического происхождения.

Задачей изобретения является разработка улучшенного способа получения НКЦ из различных видов целлюлоз, с меньшим расходом реагентов и сокращённой продолжительностью процесса деструкции. В этом и состоит технический результат.

Технический результат достигается тем, что способ получения нанокристаллических частиц целлюлозы каталитическим сольволизом в органической среде в виде водной дисперсии, включающий регулируемую деструкцию порошковой целлюлозы, полученной из древесины хвойных или лиственных пород, или льна или хлопка, выделение, очистку целевого продукта, согласно изобретению, деструкцию осуществляют каталитическим сольволизом целлюлозного сырья в смеси уксусной кислоты, октанола-1 и фосфорновольфрамовой кислоты, при этом фосфорновольфрамовую кислоту берут в количестве 0,2-0,3 % мольных относительно ангидроглюкозной единицы целлюлозы, соотношение уксусная кислота/октанол-1 составляет 10:1 объемных частей, процесс деструкции целлюлозы осуществляют при температуре кипения полученной смеси в течение 40 мин, при этом прибавляя каждые 5 мин раствор перекиси водорода в количестве 0,05 % от объема жидкости в системе. Кроме того деструкцию целлюлозы ведут при температуре 1150С; целевой продукт получают с длигой стержнеобразных частиц 150-400 нм и толщиной от 6,2 до 9,6 нм с индексом кристалличности выше 0,7.

Способ осуществляется следующим образом.

1. Регулируемая деструкция (сольволиз целлюлозы в органической среде).

Исходный целлюлозный материал, уксусную кислоту, октанол-1 и катализатор (ФВК) помещают в реактор, снабженный мешалкой, термометром и нагревателем, осуществляя процесс сольволиза при температуре 115°С в течение 40 мин, с регулярным добавлением перекиси водорода.

Жидкостной модуль для уксусной кислоты составляет 8-12 (предпочтительно 10). Соотношение уксусная кислота/октанол-1 составляет 10:1 (по объему). ФВК берут в количестве 0,2-0,3 % мольных относительно ангидроглюкозной единицы целлюлозы.

2. Очистка и получение водной дисперсии НКЦ.

Отделяют осадок из полученной по окончании процесса сольволиза реакционной смеси, диспергируют его в этаноле или изопропиловом спирте и центрифугируют, повторяя этот процесс дважды. Полученную суспензию обрабатывают водным раствором NaOH и очищают методом диализа либо многократного центрифугирования, либо (предпочтительно) сочетанием этих методов. Получают устойчивую водную дисперсию, содержащую, в зависимости от вида исходной целлюлозы, стержнеобразные частицы НКЦ длинной от 150 до 400 нм и толщиной от 6,2 до 9,6 нм.

Используемые в предлагаемом способе основные материалы и реактивы: ледяная уксусная кислота, фосфорновольфрамовая кислота (H3PW12O40), октиловый спирт, перекись водорода (предпочтительно концентрацией 20-30 %); порошковые целлюлозы, полученные на основе хлопкового и льняного волокна или целлюлозы, выделенной из различных хвойной и лиственной пород древесины. Средняя степень полимеризации ПЦ 150-300.

Предлагаемый способ характеризуется совокупностью признаков, улучшающих технических результат, по сравнению с известными способами:

1. Сниженными затратами за счёт уменьшения продолжительности основных процессов.

2. Продолжительность процесса регулируемой деструкции целлюлозы снижается до 40 мин, что в 4-5 раз меньше, чем в известном способе.

3. Способ включает простые, масштабируемые технологические операции.

4. Используются доступные реагенты.

5. Минимизируется использование фосфорновольфрамовой кислоты - по сравнению с наиболее близкими аналогами предлагаемого способа: расход ФВК уменьшается в 20 и более раз, до 0,2-0,3 мольных % относительно ангидроглюкозной единицы целлюлозы.

6. Уменьшается расход воды и перекиси водорода.

7. Получаемые частицы НКЦ обладают толщиной не более 12 нм, что обеспечивает качественное изменение свойств материала.

При осуществлении способа исключается использование больших объёмов минеральных кислот на единицу получаемого продукта. Используемая в качестве катализатора деструкции ФВК и применяемая в качестве растворителя уксусная кислота регенерируются и возвращаются в технологический цикл.

Способ эффективен и прост в исполнении, включает две основных стадии, не требует узкоспециализированного оборудования, больших энергетических и сырьевых затрат, дорогостоящих реагентов, источников ионизирующего излучения, работы под давлением либо в вакууме. Пригоден для получения наночастиц на основе различных видов целлюлоз.

Анализ известного технического уровня не выявил технических решений с совокупностью признаков по реализации вышеописанного результата, что свидетельствует о соответствии заявляемого технического решения критериям «новизна», «изобретательский уровень».

Сущность предлагаемых решений и возможность их осуществления подтверждается примерами. Приведённые примеры дополнительно поясняется рисунком 1, на котором приведено изображения частиц НКЦ, полученных на основе различного типа целлюлоз и таблицей, с характеристиками полученных в результате реализации настоящего изобретения продуктов.

На рисунке 1: АСМ-микрофотографии частиц НКЦ, полученных по предлагаемому способу в системе уксусная кислота/октанол-1/ФВК.

Пример 1

Порошковую целлюлозу, полученную на основе хлопковой целлюлозы, помещали в реактор, снабженный нагревательной рубашкой, перемешивающим устройством, обратным холодильником и прибором контроля температуры. Вносили уксусную кислоту (жидкостной модуль 10), октанол-1 (1.0 объем на 10 объёмов уксусной кислоты) и ФВК. Содержание ФВК относительно ангидроглюкозной единицы целлюлозы 0,20 % мольн.

Процесс деструкции целлюлозы осуществляли при температуре кипения полученной смеси (115С) в течение 40 мин, каждые 5 мин. прибавляя раствор перекиси водорода в количестве 0,05 % от объема жидкости в системе.

По окончании реакционную смесь охлаждали. Осадок отделяли на центрифуге, диспергировали в этиловом спирте (операцию повторяли дважды). Полученный целлюлозный материал переносили в раствор NaOH с концентрацией 0,5 моль/л выдерживали 4 ч, после чего повторно центрифугировали (4000 об/с × 30 мин). Полученный осадок диспергировали в дистиллированной воде и дополнительно очищали методом диализа против дистиллированной воды в мембранах с размером пор 12-14 кДа. Получали устойчивую дисперсию, содержащую стержнеобразные частицы НКЦ с длинной 150 нм и толщиной 8,7 нм.

Пример 2

Проводят аналогично примеру 1, но с общим содержанием фосфорновольфрамовой кислоты относительно целлюлозы 0,30 % мольн.

Пример 3

Проводят аналогично примеру 1, с использованием в качестве исходного материала порошковой целлюлозы, полученной на основе льняной целлюлозы.

Пример 4

Проводят аналогично примеру 2, с использованием в качестве исходного материала порошковой целлюлозы, полученной на основе льняной целлюлозы

Пример 5

Проводят аналогично примеру 1, с использованием в качестве исходного материала порошковой целлюлозы, полученной на основе хвойной беленой целлюлозы.

Пример 6

Проводят аналогично примеру 2, с использованием в качестве исходного материала порошковой целлюлозы, полученной на основе хвойной беленой целлюлозы.

Пример 7

Проводят аналогично примеру 1, с использованием в качестве исходного материала порошковой целлюлозы, полученной на основе лиственной беленой целлюлозы.

Пример 8

Проводят аналогично примеру 2, с использованием в качестве исходного материала порошковой целлюлозы, полученной на основе лиственной беленой целлюлозы.

Таким образом, изобретение позволяет получать стержнеобразные частицы целлюлозы длинной от 150 до 400 нм и толщиной от 6,2 до 9,6 нм в зависимости от вида исходной целлюлозы (хлопковая, льняная, целлюлоза лиственных или хвойных пород древесины), с индексом кристалличности частиц выше 0,7 на основе порошковых целлюлоз, полученных из различного растительного материала: древесины хвойных и лиственных пород, льна и хлопка. Заявленный способ характеризуется низким расходом катализатора и сниженной продолжительностью процесса регулируемой деструкции (сольволиза).

Таблица

Характеристики частиц НКЦ, полученных по предлагаемому способу в системе уксусная кислота/октанол-1/ФВК

Пример длина
частицы, нм
Наибольшая
толщина, нм
Индекс
Кристалличности
(по Сегалу)
Выход
относительно
исходной целлюлозы, %
1 150 8.7±1.0 0,82 34±5
2 400 7.3±0.6 0,77 30±4
3 258 6.2±0.2 0,80 33±3
4 249 9.6±1.2 0,72 31±5
5 167 8.3±0.9 0,83 33±6
6 390 7.2±0.7 0,76 29±5
7 244 6.2±0.4 0,79 30±3
8 230 9.3±0.8 0,74 30±4


Способ получения нанокристаллических частиц целлюлозы каталитическим сольволизом в органической среде
Источник поступления информации: Роспатент

Показаны записи 21-30 из 50.
13.01.2017
№217.015.7d4b

Способ получения диоксида титана

Изобретение может быть использовано в химической промышленности. Способ получения диоксида титана включает взаимодействие при перемешивании тетрабутоксититана с органической жидкостью, а затем с осаждающим компонентом с последующими нагревом и выдержкой. В качестве органической жидкости...
Тип: Изобретение
Номер охранного документа: 0002600767
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.85b3

Способ повышения продуктивных качеств и сохранности поросят в период доращивания

Изобретение относится к сельскому хозяйству и может быть использовано в технологии выращивания поросят в племенных и фермерских хозяйствах. Предложен способ повышения продуктивных качеств и сохранности поросят в период доращивания. Способ включает введение перорально в рацион питания...
Тип: Изобретение
Номер охранного документа: 0002603266
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.965c

Сесквитерпеновый тиоацетат (варианты)

Изобретение относится к сесквитерпеновому тиоацетату кариофилленоксида со структурной формулой и к сесквитерпеновому тиоацетату бутуленона в виде смеси двух диастереомеров со структурной формулой для первого диастереомера и со структурной формулой для второго диастереомера, взятых при...
Тип: Изобретение
Номер охранного документа: 0002608944
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.9d3f

Способ получения стандартного образца сульфатного скипидара

Изобретение относится к области медицины, в частности к способу получения стандартного образца сульфатного скипидара. Способ получения стандартного образца сульфатного скипидара, включающий отбор пробы воды, двукратную экстракцию сульфатного скипидара диэтиловым эфиром, эфирные вытяжки,...
Тип: Изобретение
Номер охранного документа: 0002610421
Дата охранного документа: 10.02.2017
25.08.2017
№217.015.c096

Ω-(гидроксиарил)алкилсульфиды на основе 2-изоборнил-6-метил-4-пропилфенола

Изобретение относится к новым химическим соединениям - производным изоборнилфенолов, в которых серосодержащая функциональная группа отделена от фенольного фрагмента на три атома углерода. n=0, m=0 (I) n=1, m=0 (II) n=1, m=2 (III). Технический результат - получение новых серосодержащих...
Тип: Изобретение
Номер охранного документа: 0002616618
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.caab

Гидрофильный конъюгат производного крахмала и 2,6-диизоборнил-4-метилфенола и способ его получения

Изобретение относится к гидрофильным конъюгатам формулы I, включающим фрагменты 2,6-диизоборнил-4-метиленфенола и 2-гидроксипропил триметиламмоний хлорида, связанные с крахмалом простой эфирной связью, и способу их получения, применимых в медицине: где R=H, А, СНСН(ОН)CHN(СН), при этом...
Тип: Изобретение
Номер охранного документа: 0002619934
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cbd8

Макропористый керамический материал с углеродным нановолокнистым покрытием и способ его получения

Изобретение относится к макропористой керамике с углеродными наноструктурами и способу ее получения и может быть использовано для очистки и разделения жидкостей и газов, в медико-биологических исследованиях для очистки и разделения биологических сред, для очистки от радиоактивных веществ, для...
Тип: Изобретение
Номер охранного документа: 0002620437
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ccae

Способ получения водной дисперсии нанокристаллической целлюлозы

Изобретение относится к химической переработке целлюлозы, в частности к способам получения частиц и водных дисперсий нанокристаллической целлюлозы, и может быть использовано при производстве наночастиц. В способе осуществляют регулируемую деструкцию целлюлозного сырья в смеси...
Тип: Изобретение
Номер охранного документа: 0002620429
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.d11e

Способ получения керамического композита с мультиканальной структурой

Изобретение относится к области создания высокотемпературных конструкционных керамических композиционных материалов с матрицей на основе TiSiC, а именно к способу получения композитов с мультиканальной структурой, т.е. имеющих регулярную систему протяженных изолированных полых каналов....
Тип: Изобретение
Номер охранного документа: 0002622067
Дата охранного документа: 09.06.2017
26.08.2017
№217.015.df27

Инъекционная лекарственная форма гидрофильного конъюгата гидроксиэтилкрахмала и 2,6-диизоборнил-4-метилфенола, способ ее получения и применения для лечения сердечно-сосудистых заболеваний

Изобретение относится к медицине, конкретно к фармакологии, и может быть использовано при создании и применении инъекционных лекарственных форм, обладающих антиоксидантной, гемореологической активностью. Инъекционная лекарственная форма гидрофильного конъюгата гидроксиэтилкрахмала и...
Тип: Изобретение
Номер охранного документа: 0002625039
Дата охранного документа: 11.07.2017
Показаны записи 11-17 из 17.
16.02.2019
№219.016.bb0e

Порошковый лигноцеллюлозный материал на основе неоргано-лигноцеллюлозного гибрида

Изобретение относится к области химии лигноцеллюлозы и ее модифицирования, а именно к порошковым неоргано-лигноцеллюлозным гибридам и порошковым лигноцеллюлозным материалам. Изобретение может быть использовано при производстве полимерных композитов (резин, пластмасс), строительных материалов...
Тип: Изобретение
Номер охранного документа: 0002680046
Дата охранного документа: 14.02.2019
01.03.2019
№219.016.cfd6

Получение полифункциональных сульфатированных производных на основе порошковой целлюлозы, обладающих антикоагулянтной активностью

Изобретение относится к сульфатированным производным целлюлозы, обладающим антикоагулянтной активностью. Сульфатированное производное получают путем сульфатирования целлюлозного материала. Сульфатирование осуществляют в среде N,N-диметилформамида. В качестве целлюлозного материала используют...
Тип: Изобретение
Номер охранного документа: 0002430729
Дата охранного документа: 10.10.2011
31.05.2019
№219.017.70de

Нанокристалл, гидрозоль нанокристаллической целлюлозы и способ его получения

Группа изобретений относится к области химической переработки целлюлозы, а именно к созданию новых целлюлозных наноразмерных материалов, продуктов на их основе и способам их получения. Способ получения гидрозоля нанокристаллической целлюлозы в виде водной дисперсии включает каталитический...
Тип: Изобретение
Номер охранного документа: 0002689753
Дата охранного документа: 28.05.2019
13.07.2019
№219.017.b36c

Аминоалкилдезоксипроизводное целлюлозы, способ его получения и средство, обладающее антитромбоцитарной активностью

Изобретение относится к области химико-фармацевтической промышленности, а именно касается создания на основе целлюлозы аминобутилдезоксисодержащего производного в форме гидрохлорида, к способу его получения и применения в качестве антиагрегантного средства, обладающего высокой ингибиторной...
Тип: Изобретение
Номер охранного документа: 0002694342
Дата охранного документа: 11.07.2019
03.10.2019
№219.017.d1b0

Средство, обладающее нейропротекторной активностью

Изобретение относится к медицине и фармакологии, а именно к применению О-(((4-гидрокси-3,5-ди(1,7,7-триметилбицикло[2.2.1]гепт-экзо-2-ил)бензил)окси)этил)-О-(2-гидроксиэтил)-(1→4)-α-D-глюкана с содержанием фрагментов 2,6-диизоборнил-4-метиленфенола от 0,5 до 6,0 мас.% в качестве...
Тип: Изобретение
Номер охранного документа: 0002701739
Дата охранного документа: 01.10.2019
15.11.2019
№219.017.e243

Способ получения нанокристаллической целлюлозы с использованием cu(ii) катализатора

Изобретение относится к химической переработке целлюлозы, в частности к способам получения нанокристаллической целлюлозы в виде гидрозоля. Способ включает каталитический сольволиз микрокристаллической целлюлозы, выделение и очистку целевого продукта. Каталитический сольволиз целлюлозного сырья...
Тип: Изобретение
Номер охранного документа: 0002705957
Дата охранного документа: 12.11.2019
15.05.2023
№223.018.57e6

Устойчивая эмульсия пикеринга, стабилизированная нанокристаллами ацетилированной целлюлозы, способ её получения и применения

Изобретение относится к фармацевтической промышленности, а именно к устойчивой эмульсии Пикеринга. Устойчивая эмульсия Пикеринга, представляющая собой гетерогенную систему, состоящую из двух несмешивающихся жидкостей, в которой одна жидкость равномерно распределена по всему объему другой...
Тип: Изобретение
Номер охранного документа: 0002767247
Дата охранного документа: 17.03.2022
+ добавить свой РИД