×
11.03.2019
219.016.db78

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР

Вид РИД

Изобретение

№ охранного документа
0002426190
Дата охранного документа
10.08.2011
Аннотация: Изобретение относится к способам получения наноразмерных структур и может найти применение, в частности, в микроэлектронике, а также при изготовлении модулей памяти со сверхвысокой плотностью записи, наносенсоров, молекулярных сит, игл-зондов сканирующих туннельных микроскопов. Технический результат - обеспечение перемещения исходного нанодисперсного вещества в пространстве с возможностью постоянного контроля и корректировки размеров и формы создаваемых наноразмерных структур. Способ формирования наноразмерных структур включает перемещение нанодисперсного вещества в пространстве с помощью электронного луча, боковую сторону которого сближают с нанодисперсным веществом на расстояние не более 10 нм, затем электронный луч перемещают по заданной траектории, определяющей форму создаваемой наноразмерной структуры. Для перемещения нанодисперсного вещества используют сфокусированный электронный луч сканирующего электронного микроскопа. 1 з.п. ф-лы, 7 ил.

Изобретение относится к способам получения наноразмерных структур и может найти применение, в частности, в микроэлектронике, точнее в наноэлектронике, а также при изготовлении модулей памяти со сверхвысокой плотностью записи, наносенсоров, молекулярных сит, игл-зондов сканирующих туннельных микроскопов и т.п.

Известен способ манипулирования наноразмерными объектами с помощью лазерного нанопинцета [Ashkin A., Dziedzic J.М. & Yamane Т. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769 (1987)], основанный на захвате и перемещении сфокусированным лазерным лучом дискретных частиц, взвешенных в жидкости либо газе. Известный способ позволяет создавать определенные рисунки из частиц преимущественно размером 100-5000 нм, но создание структур заданной непрерывной объемной формы затруднено помехами, связанными с броуновским движением, при этом для получения чистых образцов из них необходимо удалять жидкость.

Известен способ получения наноструктур путем переноса массы с иглы сканирующего туннельного микроскопа [В.Неволин. Зондовые нанотехнологии в электронике. Издание второе, исправленное и добавленное. М.: Техносфера, 2006. - с.72-76], основанный на том, что при приложении достаточно высокого напряжения между иглой-зондом и подложкой с иглы микроскопа на подложку переносятся отдельные атомы. Наноструктуры формируют, сканируя положение иглы и подавая в соответствующие моменты импульсы напряжения на туннельный промежуток, при этом атомы соответствующих элементов могут быть помещены на кончик иглы и с него перенесены в плоскости подложки в нужную точку. Недостатком известного способа является дискретный перенос вещества, что ограничивает возможность создания сплошных объемных наноструктур заданной формы. Кроме того, затруднены непрерывный контроль создаваемого объекта, а также повторная работа с полученным объектом после его выемки из туннельного микроскопа.

Известен способ получения наноразмерных структур с помощью электронно-лучевой литографии [J.A.Liddle et al. Resist Requirements and Limitations for Nanoscale Electron-Beam Patterning. Mat. Res. Soc. Symp. Proc. 739 (19): 19-30 (2003)] путем модификации поверхности подложки электронным лучом, который сканирует поверхность, повторяя заложенный в управляющий компьютер шаблон с толщиной линии преимущественно 10 нм. Известный способ в основном используют для создания матриц для фотолитографии. Его недостатком является функциональная ограниченность, обусловленная невозможностью перемещения вещества в пространстве, в результате чего способ позволяет создавать только закрепленные на подложке плоские либо рельефные объекты, форма которых определяется используемым шаблоном.

Наиболее близким к заявляемому способу является метод перьевой нанолитографии [В.В.Старостин. Материалы и методы нанотехнологии. Учебное пособие. Под общ. редакцией Л.Н.Патрикеева. - М.: БИНОМ. Лаборатория знаний, 2008, с.393-394], основанный на перемещении нанодисперсного вещества и заключающийся в рисовании на подложке плоских наноструктур коллоидной жидкостью (наночернилами), которую помещают на острие-зонде атомно-силового микроскопа. Ширина наносимых линий в известном способе достигает 1-2 нм.

Однако известный метод, в котором происходит осаждение нанодисперсного вещества на подложку, позволяет создавать только объекты, закрепленные на подложке и повторяющие ее рельеф, и не обеспечивает возможности создания свободно размещающихся в пространстве объемных наноразмерных структур (нитей, стержней, мембран и т.п.), предназначенных для использования в функциональных наноустройствах. Кроме того, в методе перьевой нанолитографии затруднен непрерывный контроль и корректировка размеров и формы создаваемого объекта, в том числе толщины рисуемой линии, поскольку для его осуществления необходимо записывать атомно-силовые изображения объекта на отдельных этапах его создания, что требует достаточно продолжительного времени, при этом не всегда возможен возврат в исходную точку создания объекта.

Задачей изобретения является создание способа, обеспечивающего получение объемных наноразмерных структур заданной формы, свободно размещающихся в пространстве.

Технический результат изобретения заключается в обеспечении перемещения исходного нанодисперсного вещества в пространстве с возможностью постоянного контроля и корректировки размеров и формы формируемых наноразмерных структур.

Указанный технический результат достигается способом формирования наноразмерных структур, включающим перемещение исходного нанодисперсного вещества, в котором в отличие от известного указанное перемещение осуществляют с помощью электронного луча, боковую сторону которого сближают с исходным нанодисперсным веществом на расстояние не более 10 нм, затем электронный луч перемещают по заданной траектории, определяющей форму создаваемой наноразмерной структуры.

Контроль и корректировка формируемых наноразмерных структур оптимальным образом осуществляются при использовании электронного луча сканирующего электронного микроскопа.

Способ осуществляют следующим образом.

Образец, содержащий исходное нанодисперсное вещество, размещают на подложке, в качестве которой используют, например, предметную сеточку для просвечивающих электронных микроскопов, кремниевую пластинку и т.п., при этом частицы нанодисперсного вещества либо их агломераты могут находиться вблизи края подложки либо краев отверстий в подложке и частично «свешиваться» с нее. Записывают электронно-микроскопическое изображение образца, например, с помощью сканирующего электронного микроскопа (SEM).

Не изменяя фокусировки электронного луча, устанавливают его фокус либо область сканирования фокуса вблизи границы нанодисперсного вещества и сближают с ним на расстояние не более 10 нм вплоть до полного соприкосновения боковой стороны электронного луча с указанным веществом, при этом луч располагают нормально к плоскости подложки либо под углом к ней.

Сфокусированный электронный луч, а также область сканирования сфокусированного электронного луча притягивают частицы нанодисперсного вещества, которые смещаются по направлению к боковой стороне электронного луча и образуют сплошную объемную полосу. При своем перемещении по заданной траектории сфокусированный электронный луч или область его сканирования увлекают за собой частицы нанодисперсного вещества, которые движутся вслед за боковой стороной электронного луча в области его фокуса и непрерывно заполняют пространство. Таким образом, происходит непрерывное перемещение нанодисперсного вещества в область фокусировки либо в область развертки сфокусированного электронного луча и его непрерывное следование вдоль траектории передвижения электронного луча либо области его сканирования. Установлено, что при сохранении неизменного положения области развертки электронного луча исходное нанодисперсное вещество с течением времени заполняет эту область.

Таким образом, с помощью перемещения электронного луча по определенной траектории обеспечивается формирование из исходного нанодисперсного вещества наноразмерных структур заданной формы, которые могут быть сформированы как на подложке, так и в пространстве.

Размеры формируемых наноразмерных структур определяются диаметром перемещаемой в пространстве области сканирования электронного луча либо диаметром электронного луча (в случае отсутствия перемещаемой области сканирования) и их линейными перемещениями. Минимальная толщина формируемых структур достигается при перемещении сфокусированного электронного луча без сканирования области, при этом с уменьшением диаметра электронного луча она уменьшается.

Предлагаемый способ позволяет остановиться на любом этапе формирования наноразмерной структуры, получить электронно-микроскопическое изображение формируемого образца (которое получается практически мгновенно), затем выбрать дальнейшее направление движения электронного луча, скорректировать толщину создаваемого объекта либо вернуться в исходную точку и провести дополнительное формирование, перемещая луч в другом направлении.

Примеры конкретного осуществления способа

Формирование наноразмерных структур осуществляли с помощью сканирующего электронного микроскопа (SEM) Hitachi S5500 высокого разрешения, снабженного приставкой для работы в режиме сканирующего просвечивающего микроскопа (STEM) и энергодисперсионным спектрометром (EDS) марки Thermo. Сканирование и запись изображения проводили с помощью микроскопа, перемещение электронного луча по области сканирования выполняли в операционной среде компьютера спектрометра EDS.

Пример 1

Образец помещали на стандартную предметную сеточку (фиг.1) для просвечивающих электронных микроскопов, покрытую ячеистым липким углеродным покрытием. Во избежание эффекта «выгорания» подложки под электронным лучом и его возможного вклада в электронно-микроскопическое изображение формируемого объекта электронный луч подводили к частицам вещества, прилипшим к краю ячеек липкого покрытия, под которыми подложка отсутствовала. Индивидуальный рисунок пор липкого покрытия, имеющий место для каждой отдельной сеточки, позволяет отыскать место предыдущих съемок спустя значительный промежуток времени.

Для формирования наноразмерных структур использовали нанодисперсное вещество, полученное путем совместной деструкции железосодержащих электродов (Fe 95%, С 5%) и политетрафторэтилена (ПТФЭ) в плазме импульсного высоковольтного разряда известным способом (пат. РФ №2341536, опубл. 2008.12.20). По данным рентгенофазового анализа, выполненного на дифрактометре D8 ADVANCE по методу Брег-Брентано с использованием программы поиска EVA с банком порошковых данных PDF-2, полученное вещество представляет собой композит, содержащий FeF3, FeOF, ПТФЭ, фторированный и алифатический углерод.

На фиг.2 показаны STEM (просвечивающий режим электронного сканирующего микроскопа) изображения исходного нанодисперсного вещества (изображение 1) и конечной сформированной наноструктуры (изображение 5). В ходе перемещения круговых областей сканирования электронного луча были получены промежуточные наноразмерные структуры, показанные на изображениях 2 и 3 (фиг.2). Траектории перемещения области сканирования обозначены светлыми метками, при этом большему диаметру метки соответствует большая по диаметру область сканирования электронного луча. В ходе перемещения электронного луча, сфокусированного в точку, получена структура, показанная на изображении 4 (фиг.2).

Проверка стабильности сформированных наноразмерных структур показала, что их форма и размеры с течением времени не изменяются (фиг.3, изображения 1, 2, 3 - сформированная наноразмерная структура, показанная в различном масштабе, изображения 4, 5, 6 - эта же структура спустя 103 часа). Изображения 1, 2, 3, 5 и 6 представляют собой STEM изображения. Изображение 4 записано в режиме отражения сканирующего электронного микроскопа для демонстрации объемности нанодисперсного вещества.

Стабильность сформированных структур подтверждается также тем, что спустя некоторое время (103 часа в данном примере) их вещество не взаимодействует с электронным лучом; полученная структура не реагирует изменением своей формы на его перемещение.

Пример 2

В условиях примера 1 из упомянутого нанодисперсного вещества была сформирована нанопора диаметром 4 нм, представленная на фиг.4 (изображения 1-6). Траектория передвижения электронного луча отмечена белыми метками. На изображении 1 представлен исходный образец нанодисперсного вещества, на изображениях 5-6 - вид конечной сформированной поры при различном увеличении.

Пример 3

В условиях примера 1 из упомянутого нанодисперсного вещества был сформирован наностержень длиной 42 нм и толщиной 10 нм, представленный на фиг.5 (изображения 6-9). Траектория передвижения электронного луча показана белыми метками. На изображении 6 представлена исходная форма образца нанодисперсного вещества (идентичная представленной на изображении 6, фиг.3), на изображениях 7-9 - сформированный наностержень и его положение на исходном образце.

Пример 4

В условиях примера 1 из нанодисперсного оксида железа Fe2O3, состав которого определен по данным рентгенофазового и энергодисперсионного анализа, сформирована наноразмерная структура, последовательные этапы формирования которой показаны на фиг.6 (изображения 1-16). Траектория перемещения сфокусированного в точку электронного луча обозначена светлыми метками. Конечный вид сформированной в пространстве наноразмерной структуры в различном масштабе показан на изображениях 15 и 16.

Пример 5

Для формирования наноразмерных структур использовали нанодисперсный оксид вольфрама WO3, полученный путем деструкции вольфрамовых электродов в плазме высоковольтного электрического разряда на воздухе и осажденный на кремниевой подложке. Были использованы глобулярные формы этого вещества, представляющие собой ассоциаты наночастиц размерами не более 15 нм (фиг.7, изображение 1).

На фиг.7 (изображения 2-9) показано последовательное формирование наноразмерной структуры при перемещении сфокусированного электронного луча. Траектория передвижения электронного луча отмечена светлыми метками. На изображении 8 показан вид конечной сформированной структуры, находящейся на подложке, на изображении 9 - общий вид образца в области формирования этой наноструктуры.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
18.05.2019
№219.017.585a

Способ получения смешанных оксидов церия и циркония

Изобретение относится к получению смешанных оксидов церия и циркония в виде тонких пленок на металлической подложке и может найти применение в катализе. Способ получения смешанных оксидов церия и циркония с использованием сульфата циркония и растворимой соли церия заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002367519
Дата охранного документа: 20.09.2009
18.05.2019
№219.017.5b2a

Способ плазменно-электролитического оксидирования металлов и сплавов

Изобретение относится к области гальванотехники и может быть использовано для формирования покрытий в условиях управления кинетикой плазменно-электролитического оксидирования - ПЭО. Способ включает измерение мгновенных значений силы тока и напряжения, периодическое или постоянное выполнение...
Тип: Изобретение
Номер охранного документа: 0002440445
Дата охранного документа: 20.01.2012
09.06.2019
№219.017.7909

Способ получения тетрагидробората калия

Изобретение относится к способу получения тетрагидробората калия, широко используемого в тонком органическом синтезе, при получении наноматериалов, в качестве осадителя благородных металлов. Смесь исходных реагентов: тетрафторобората калия, гидрида натрия или кальция предварительно подвергают...
Тип: Изобретение
Номер охранного документа: 0002344071
Дата охранного документа: 20.01.2009
09.06.2019
№219.017.7be9

Установка для исследования накипеобразования

Изобретение относится к исследованию накипеобразования в приближенных к производственным условиях при контролируемых значениях таких параметров как давление и концентрации солей в рабочей жидкости. Установка для исследования накипеобразования, выполненная в виде испарительной камеры и...
Тип: Изобретение
Номер охранного документа: 0002306560
Дата охранного документа: 20.09.2007
09.06.2019
№219.017.7c70

Способ получения солей додекагидро-клозо-додекаборной кислоты

Изобретение может быть использовано для получения солей додекагидро-клозо-додекаборной кислоты, которые находят применение в качестве твердых электролитов, химически и термически стойких полимерных материалов, катионообменных смол, энергоемких соединений. Водный раствор, содержащий анионы...
Тип: Изобретение
Номер охранного документа: 0002323879
Дата охранного документа: 10.05.2008
19.06.2019
№219.017.8735

Способ получения химических соединений с додекагидро-клозо-додекаборатным анионом

Изобретение может быть использовано в химической промышленности. В способе получения химических соединений с додекагидро-клозо-додекаборатным анионом BH  проводят пиролиз тетрагидробората калия KBH в инертной атмосфере в присутствии тетрафторобората натрия или тетрафторобората калия. Далее...
Тип: Изобретение
Номер охранного документа: 0002378196
Дата охранного документа: 10.01.2010
19.06.2019
№219.017.8a1f

Коллоидно-устойчивый наноразмерный сорбент для дезактивации твердых сыпучих материалов и способ дезактивации твердых сыпучих материалов с его использованием

Изобретение относится к области защиты окружающей среды, конкретно к дезактивации почв, грунтов, песка, ионообменных смол, шлаков и других твердых сыпучих отходов, загрязненных радионуклидами, и может применяться на АЭС, радиохимических производствах, в зонах техногенных катастроф и аварийных...
Тип: Изобретение
Номер охранного документа: 0002401469
Дата охранного документа: 10.10.2010
10.07.2019
№219.017.aa51

Способ плазменно-электролитического оксидирования вентильных металлов и их сплавов

Изобретение относится к электролитическому нанесению покрытий на вентильные металлы и их сплавы, преимущественно на алюминий и титан, и может найти применение в различных отраслях промышленности для получения подслоя под лакокрасочные покрытия, для защиты изделий от атмосферной коррозии, в том...
Тип: Изобретение
Номер охранного документа: 0002263163
Дата охранного документа: 27.10.2005
10.07.2019
№219.017.aa97

Додекагидро-клозо-додекаборат уротропина и способ его получения

Изобретение направлено на получение новой соли додекагидро-клозо-додекаборной кислоты, а именно додекагидро-клозо-додекабората уротропина, который обладает высокой калорийностью и горючестью и может быть использован в воспламеняющих и пиротехнических составах. Способ основан на взаимодействии в...
Тип: Изобретение
Номер охранного документа: 0002282586
Дата охранного документа: 27.08.2006
10.07.2019
№219.017.ac03

Способ получения нанодисперсного фторорганического материала

Описан способ получения нанодисперсного фторорганического материала путем термодеструкции политетрафтоэтилена в атмосфере воздуха с последующим охлаждением, причем термодеструкцию проводят в плазме электрического разряда в переменном электрическом поле при амплитуде переменного напряжения не...
Тип: Изобретение
Номер охранного документа: 0002341536
Дата охранного документа: 20.12.2008
Показаны записи 1-5 из 5.
20.12.2013
№216.012.8d24

Способ получения нанодисперсного фторопласта

Изобретение относится к получению нанодисперсного фторорганического материала, который может быть использован в качестве твердой смазки, а также в составе композиций для приборов, устройств, машин и механизмов, в том числе, масляных композиций для двигателей и трансмиссий автомобилей. Способ...
Тип: Изобретение
Номер охранного документа: 0002501815
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.906f

Способ получения углеродного наноматериала и углеродный наноматериал

Изобретение может быть использовано в производстве катализаторов, электродов, токопроводящих элементов, фильтров. Твердый политетрафторэтилен (ПТФЭ) подвергают пиролизу без доступа воздуха в плазме импульсного высоковольтного электрического разряда при атмосферном давлении с амплитудой...
Тип: Изобретение
Номер охранного документа: 0002502668
Дата охранного документа: 27.12.2013
20.08.2015
№216.013.7365

Способ переработки политетрафторэтилена

Изобретение относится к области переработки политетрафторэтилена (ПТФЭ) и утилизации его отходов и может найти применение для получения растворов, содержащих ионы фтора (электролитов) и используемых для проведения электролиза и химических реакций в растворах с участием ионов фтора с выделением...
Тип: Изобретение
Номер охранного документа: 0002561111
Дата охранного документа: 20.08.2015
26.08.2017
№217.015.e962

Способ получения углерод-фторуглеродного нанокомпозитного материала

Изобретение относится к получению нанокомпозитных материалов. Предложен способ получения углерод-фторуглеродного нанокомпозитного материала, включающий термодеструкцию твердого политетрафторэтилена, которую осуществляют в плазменной среде, образующейся в результате предварительной деструкции...
Тип: Изобретение
Номер охранного документа: 0002627767
Дата охранного документа: 11.08.2017
10.07.2019
№219.017.ac03

Способ получения нанодисперсного фторорганического материала

Описан способ получения нанодисперсного фторорганического материала путем термодеструкции политетрафтоэтилена в атмосфере воздуха с последующим охлаждением, причем термодеструкцию проводят в плазме электрического разряда в переменном электрическом поле при амплитуде переменного напряжения не...
Тип: Изобретение
Номер охранного документа: 0002341536
Дата охранного документа: 20.12.2008
+ добавить свой РИД