×
11.03.2019
219.016.db20

Результат интеллектуальной деятельности: СПОСОБ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОРЕЖУЩЕГО ИНСТРУМЕНТА, ИЗГОТОВЛЕННОГО ИЗ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам упрочнения поверхности изделий комплексным ионно-плазменным методом и может быть использовано при изготовлении металлорежущего инструмента и других изделий, обладающих высокой твердостью и износостойкостью. Способ включает очистку, нагрев поверхности инструмента до температуры насыщения порошковой быстрорежущей стали, ионное азотирование в атмосфере азота или в азотсодержащем газе и нанесение сложнолегированного покрытия из нитридов тугоплавких металлов. Очистку проводят с прогревом поверхности инструмента до 220-260°С, нагрев поверхности инструмента до температуры насыщения порошковой быстрорежущей стали проводят таким образом, чтобы она не превышала температуру отпуска стали, а после азотирования проводят ионное травление в течение 5-7 мин. Ионно-плазменную обработку инструмента проводят в едином технологическом цикле. Повышается твердость и износостойкость режущего инструмента. 1 з.п. ф-лы, 2 табл.

Изобретение относится к способам упрочнения поверхности изделий комплексным ионно-плазменным методом и может быть использовано при изготовлении металлорежущего инструмента и других изделий, обладающих высокой твердостью и износостойкостью.

Известен способ упрочнения режущего инструмента за счет нанесения однослойного сложнолегированного покрытия ионно-плазменным методом в реактивной среде (RU №2022058, С23С 14/32, публ. 1994 г.), при котором на изделие подают отрицательный потенциал, который в процессе нанесения покрытия изменяют от величины, соответствующей порогу избирательного ионного распыления компонентов расходуемого материала, которые будут составлять покрытие этого изделия, до величины, соответствующей энергии инверсии компонента расходуемого материала с минимальным коэффициентом ионного распыления.

Недостатком данного способа является отсутствие комплексной обработки поверхности, что, как показывает производственный опыт, может снизить эффект упрочнения инструмента. Негативное влияние оказывает высокий градиент напряжений, существующий между покрытием и инструментальной основой, что является одной из основных причин разрушения покрытия, его отслаивания.

Известен способ упрочнения рабочих поверхностей режущих инструментов (RU №2026419, C23C 14/38, публ. 1995 г.), по которому инструмент из быстрорежущих сталей подвергают последовательно: ионному азотированию основы инструмента, очистке, нагреву основы в аргоновой плазме тлеющего разряда, осаждению ионно-плазменных покрытий, состоящих из нитридов металлов, с дополнительной обработкой основы до и после азотирования в плазме тлеющего разряда.

Основным недостатком данного способа комбинированного упрочнения инструмента является разрозненность процессов азотирования и нанесения покрытия, препятствующая проведению единого технологического цикла, который позволяет существенно снизить вероятность образования окислов на поверхности инструмента после азотирования, ухудшающих качество сцепления покрытия с инструментальной основой.

Также известен способ ХТО (химико-термической обработки) режущего инструмента, изготовленного из быстрорежущей стали («Ионная химико-термическая обработка сплавов». Издательство МГТУ им. Н.Э.Баумана, Москва, 1999 г., стр.270-290), при котором универсальными методами поверхностного упрочнения быстрорежущих сталей являются карбонитрация, ионное азотирование и вакуумно-плазменное нанесение износостойких покрытий. Приведены данные по проведению процесса азотирования, по которому азотирование инструмента из быстрорежущей стали проводят при температурах 480-520°С в течение 30-60 минут, при этом твердость сердцевины остается неизменной. Поверхностное упрочнение быстрорежущих сталей посредством вакуумно-плазменного нанесения износостойких покрытий проводят после ионной очистки.

Основным недостатком приведенных ХТО быстрорежущих сталей является то, что не рассматривается возможность упрочнения инструментов из быстрорежущих порошковых сталей. Такие стали имеют однородную структуру, значительно прочнее и лучше шлифуются по сравнению со сталями того же химического состава, изготовленными по обычной технологии. Традиционные быстрорежущие стали имеют в основном крупное карбидное зерно, что уменьшает пластичность стали, способствует быстрому износу инструмента. Минимальный размер карбидов порошковых сталей (0,1-0,3 мкм), а также их равномерное распределение по всей структуре позволяет значительно увеличить износостойкость инструмента.

Наиболее близким по технической сущности к предлагаемому способу является способ ионно-плазменной обработки стальной поверхности режущего инструмента (RU №2241782, С23С 14/48, публ. 2004 г.), включающий предварительную ионную очистку поверхности в нагретом состоянии, дальнейшую обработку в атмосфере азота или азотсодержащего газа при повышенной температуре в тлеющем разряде и подачу отрицательного напряжения на обрабатываемую деталь.

Основным недостатком данного способа является температурный режим при азотировании инструмента. По предлагаемому способу температуру нагрева инструмента при азотировании выдерживали в пределах 250-350°С. Однако как показали проведенные исследования, такой диапазон температур не позволяет существенно повысить микротвердость инструмента, изготовленного из порошковой высоколегированной быстрорежущей стали из-за ее плохой азотируемости. Даже при более высоких температурах азотирования (до 450°С) не наблюдалось заметного упрочняющего эффекта: прирост микротвердости не превышал 60-85 кгс/мм2, общая глубина азотирования составляла менее 30 мкм. Это связано с повышенным содержанием вольфрама и кобальта, которые задерживают диффузию азота в твердом растворе.

Техническим результатом данного изобретения является повышение твердости и износостойкости режущего инструмента.

Технический результат достигается за счет того, что в способе ионно-плазменной обработки поверхности металлорежущего инструмента, изготовленного из порошковой быстрорежущей стали, включающем очистку, нагрев поверхности инструмента до температуры насыщения порошковой быстрорежущей стали, ионное азотирование в атмосфере азота или в азотсодержащем газе и нанесение сложнолегированного покрытия из нитридов тугоплавких металлов, согласно изобретению очистку проводят с прогревом поверхности инструмента до 220-260°С, нагрев поверхности инструмента до температуры насыщения порошковой быстрорежущей стали проводят таким образом, чтобы она не превышала температуру отпуска стали, после азотирования проводят ионное травление в течение 5-7 минут, а ионно-плазменное упрочнение инструмента проводят в едином технологическом цикле.

Комбинированная обработка режущего инструмента сочетает в себе термическое и химическое воздействие на режущие поверхности инструмента с целью изменения состава, структуры и свойств поверхностного слоя.

Ионно-плазменную обработку поверхности инструмента проводят с использованием двухступенчатого вакуумно-дугового разряда, представляющего собой разряд, в котором положительный столб дуги разделен на две ступени, первая из которых представляет собой вакуумную дугу с холодным катодом, а вторая ступень - положительный столб дугового разряда в плазме рабочего газа низкого давления. Ионно-плазменная обработка инструмента с использованием двухступенчатого вакуумно-дугового разряда состоит из:

а) очистки поверхности газовым ионным травлением в атмосфере аргона с целью удаления с поверхности окислов, что позволяет ускорить процесс насыщения поверхности азотом и снизить время азотирования инструмента при повышенной температуре. Процесс ведут в течение 20 минут, прогревая поверхность инструмента до температуры 220-260°С, что необходимо для очистки больших площадей загрязнений без инициирования микродуговых привязок, при давлении газа аргона в камере 0,1 Па и значении тока на испарителе 70 А, что обусловлено материалом катода - сплав ниобий-титан-алюминий. Выбор значения величины ионного тока объясняется тем, что стабильное горение дуги газового разряда находится в области давления рабочего газа, равного 0,1-0,5 Па.

Очистка и прогрев осуществляются бомбардировкой ионами металла путем создания потоков высокоионизированной плазмы испаряемого материала. После предварительной обработки дополнительно идет прогрев поверхности инструмента до температуры 450-480°С;

б) ионно-плазменного азотирования, при котором создаются наиболее благоприятные условия для интенсивной диффузии азота в поверхностные слои. Управляя составом газовой атмосферы при азотировании путем разбавления азота инертным газом - аргоном, можно регулировать структуру и свойства азотированного слоя. Ионное азотирование инструментов имеет ряд особенностей, отличных от ионного азотирования деталей машин. При разработке технологических процессов в этом случае необходимо учитывать не только материал инструмента, но и материал, обрабатываемый этим инструментом. Ионное азотирование проводили в газовой смеси азота и аргона в течение 0,5-1 ч в интервале температур 450-510°С. Азотирование при температуре выше 510°С приводит к интенсивному разупрочнению сердцевины материала, поэтому насыщение при этой температуре проводить не рекомендуется. Температуру насыщения порошковой быстрорежущей стали выбирают таким образом, чтобы она не превышала температуру отпуска этой стали. При низкой температуре (ниже 450°С) увеличение продолжительности азотирования свыше 1 ч практически не приводит к заметному росту диффузионной зоны. Формирующееся при азотировании диффузионное покрытие, состоящее из поверхностной нитридной зоны и зоны внутреннего азотирования, обеспечивает широкий диапазон физико-механических характеристик азотированного инструмента. В таблице 1 приведены данные влияния режима азотирования на свойства азотированного слоя стали Р12МЗК5Ф2-МП (время азотирования 1 ч, давление газа 0,1 Па):

Таблица 1
Режим азотирования Толщина азотированного слоя Максимальная твердость, Н50, кгс/мм2
Температура, °С Концентрация азота в смеси, с Эффективная, hэ50=1100 кгс/мм2) Общая, Но, мкм
450 20 - 20-25 <1070
40 - 25-30 <1070
480 20 18 70-80 1297
40 32 80-100 1300
60 27 70-80 1266
80 24 60-70 1328
510 20 14 190-200 1100
40 22 190-200 1219
60 25 100-120 1272

Из приведенной таблицы видно, что азотирование при температуре 480°С в газовой смеси азота (30%) и аргона (остальное) позволяет обеспечить более высокую максимальную микротвердость азотированного слоя. С повышением температуры азотирования с 480 до 510°С эффективная толщина азотированного слоя уменьшается, а общая увеличивается;

в) дополнительного этапа кратковременного, в течение 5-7 минут, ионного травления в атмосфере аргона, связанного с необходимостью очистки поверхности инструмента перед нанесением покрытия после азотирования для того, чтобы избежать ухудшения адгезии в связи с возможным образованием тонких нитридных слоев;

г) нанесения износостойкого покрытия на основе нитридов тугоплавких металлов (сложнолегированные композиционные покрытия (Ti, Cr) N и (Nb, Ti, Al) N). Для нанесения износостойкого покрытия (Ti, Cr) N использовали катоды состава Ti+25% Cr. Для получения покрытия (Nb, Ti, Al) N использовали катоды состава - Nb - 40%, Ti - 40%, Al - 10%, легирующие добавки - Cr, Mo, Zr - остальное, до 100%. В таблице 2 приведены оптимальные параметры процесса нанесения и свойства получаемых покрытий.

Таблица 2
Покрытые (Ti, Cr)N
Параметры процесса Характеристики покрытия
Ток дуги Опорное напряжение Давление азота PN2 Продолжительность процесса Микротвердость кгс/мм2 Шероховатость Ra, мкм
60 220 0.35 60 2450 0.76-0.83
Покрытие (Nb, Ti, Al) N
Параметры процесса Характеристики покрытия
Ток дуги Опорное напряжение Давление азота PN2 Продолжительность процесса Микротвердость кгс/мм2 Шероховатость Ra, мкм
80 210 0.45 60 2650 0.68-0.75

На основании проведенных сравнительных исследований покрытий наилучшие характеристики показало покрытие (Nb, Ti, Al) N (микротвердость составила 2650 кгс/мм2, шероховатость Ra=0,68-0,75 (таблица 2). При проведении исследований на адгезию (Ti, Cr) N и (Nb, Ti, Al) N наихудшие результаты по адгезии имели образцы с большей капельной фазой.

Пример осуществления способа

Ионно-плазменную обработку поверхности инструмента, например протяжек, изготовленного из порошковой быстрорежущей стали, такой как Р12МЗК5Ф2-МП, проводили на установке "Станкин-АПП-2", в которой двухступенчатый вакуумно-дуговой разряд реализуется на базе трех дуговых испарителей, трех дополнительных анодов и перемещаемой заслонки с пневмоприводом, входящих в состав установки. Заслонка выполнена таким образом, что при возникновении дугового разряда ионы, атомы и микрокапли металла не проникают в рабочий объем камеры, а проникают только электроны. Электроны, перемещаясь к дополнительному аноду, находящемуся напротив закрытых испарителей под действием электрического поля, ионизируют газ в рабочем пространстве камеры. При подключении источника напряжения смещения к изделию ионы газа ускоряются за счет разности потенциалов между корпусом камеры и изделием. Задавая напряжение смещения в различных диапазонах можно соответственно регулировать энергию ионов газа, которыми идет обработка поверхности изделия. Интенсивность воздействия на поверхность газовой плазмы характеризуется величиной ионного тока.

Оптимальным режимом комплексного упрочнения протяжного инструмента из высоколегированной порошковой быстрорежущей стали Р12МЗК5Ф2-МП на установке "Станкин-АПП-2" для обработки изделий из жаропрочных никелевых сплавов типа ЭП741НП является:

а) ионная очистка аргоном при давлении Раргона=0,1 Па и прогрев до температуры 220°С в режиме двухступенчатого вакуумно-дугового разряда (ДВДР) при значении тока на катоде Iкатода=70 А;

б) прогрев до температуры 480°С при давлении Разота=0,1 Па и токе катода Iкатода=70 А;

в) ионное азотирование в режиме двухступенчатого вакуумно-дугового разряда в смеси газов аргон/азот в соотношении (70/30)% в течение 30 минут при давлении Рсмеси=0,3 Па и Iкатода=80 А, температура азотирования 480°С;

г) ионная очистка аргоном в режиме двухступенчатого вакуумно-дугового разряда в течение 5-7 мин при давлении Раргона=0,1 Па и Iкатода=70 А;

д) нанесение покрытия (Nb, Ti, Al) N в атмосфере чистого азота в течение 60 мин при давлении газа 0,45 Па, токе дуги катода 80 А. При нанесении покрытия использовали катод состава - Nb - 40%, Ti - 40%, Al - 10%, легирующие добавки - Сr, Мо, Zr - остальное, до 100%.

Протягивание изделий из жаропрочных сталей, таких как ЭП609Ш, комплектом протяжек из порошковой быстрорежущей стали Р12МЗК5Ф2-МП с покрытием (Nb, Ti, Al) N показало, что инструмент с износостойким покрытием может эксплуатироваться на повышенных скоростях резания (упрочнение протяжного инструмента за счет нанесения износостойкого покрытия позволяет увеличить скорость резания более чем в 3 раза по сравнению с исходным инструментом без покрытия).

При протягивании изделий из жаропрочного никелевого сплава ЭП741НП установлено, что протяжной инструмент с комплексной обработкой, включающей азотирование в смеси газов Ar/N2 в соотношении (70/30)% и последующее нанесение износостойкого покрытия (Nb, Ti, Al) N, эффективно сдерживает развитие износа по задней поверхности, продлевая срок эксплуатации инструмента.

Аттестация качества получаемых покрытий проводилась по следующим критериям: по внешнему виду, по показателям микротвердости, толщине покрытия, шероховатости покрытия, хрупкости покрытия, адгезии покрытия к основе.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 86.
22.04.2019
№219.017.3667

Устройство для получения отливок литьем по удаляемым моделям

Изобретение относится к литейному производству. Устройство содержит керамическую форму с прибыльной полостью, заливочную воронку, съемную крышку и керамическую трубку. Заливочная воронка расположена с наружной стороны съемной крышки. Крышка образует закрытую прибыльную полость. Один конец...
Тип: Изобретение
Номер охранного документа: 0002314892
Дата охранного документа: 20.01.2008
22.04.2019
№219.017.3668

Устройство для настройки комплекса бесконтактных измерений

Изобретение относится к измерительной технике и направлено на повышение точности настройки комплекса бесконтактных измерений при возможности учета перспективных искажений в процессе обработки результатов измерений. Этот технический результат обеспечивается за счет того, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002310815
Дата охранного документа: 20.11.2007
22.04.2019
№219.017.3669

Способ ремонта жаровой трубы камеры сгорания газотурбинного двигателя

Изобретение относится к области ремонта, а именно к способам ремонта жаровых труб камер сгорания газотурбинных двигателей с дефектами в виде трещин. Способ включает устранение дефекта в виде трещины путем ее механического удаления с образованием паза и заварку последнего. При этом паз получают...
Тип: Изобретение
Номер охранного документа: 0002311998
Дата охранного документа: 10.12.2007
22.04.2019
№219.017.366b

Способ изготовления технологической оснастки

Изобретение относится к литейному производству, в частности к технологии изготовления технологической оснастки высокой точности. С формообразующей поверхности формы для выплавляемых моделей изготавливают первый слепок. С формообразующей поверхности первого слепка снимают второй слепок. Второй...
Тип: Изобретение
Номер охранного документа: 0002313418
Дата охранного документа: 27.12.2007
22.04.2019
№219.017.366c

Инструментальная головка

Изобретение касается электрохимических и электрофизических методов обработки металлов, в частности инструментальных головок для обработки цилиндрических или кольцевых деталей на электрохимических и электроэрозионных станках. Инструментальная головка содержит, по меньшей мере, один...
Тип: Изобретение
Номер охранного документа: 0002313428
Дата охранного документа: 27.12.2007
22.04.2019
№219.017.3670

Способ неразрушающего контроля состояния объекта

Использование: для неразрушающего контроля состояния объекта. Сущность: заключается в том, что объект просвечивают рентгеновским или гамма-излучением, регистрируют интенсивности прошедшего сквозь объект излучения с помощью детектора, который контактирует с частью объекта, обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002304766
Дата охранного документа: 20.08.2007
22.04.2019
№219.017.3671

Способ определения суммарной пропускной способности внутренних сквозных каналов в изделии

Изобретение относится к контрольно-диагностическим технологиям. Способ включает заполнение газом ресивера и продувку каналов изделия газом из ресивера через трубопровод, при этом ресивер заполняют газом до давления, обеспечивающего критический перепад между давлением в ресивере и давлением...
Тип: Изобретение
Номер охранного документа: 0002303778
Дата охранного документа: 27.07.2007
22.04.2019
№219.017.3672

Станок для электрохимического шлифования

Изобретение относится к области машиностроения и может быть использовано при электроабразивном шлифовании. Станок содержит поворотный стол, рабочий инструмент, систему снабжения электролитом и систему управления источником тока. Предусмотрены также столы, выполненные с возможностью...
Тип: Изобретение
Номер охранного документа: 0002305026
Дата охранного документа: 27.08.2007
22.04.2019
№219.017.3673

Установка для получения диффузионных покрытий в циркулирующей газовой среде

Изобретение относится к химико-термической обработке деталей и может найти применение в машиностроении, в авиационной промышленности и в других отраслях народного хозяйства. Для расширения функциональных возможностей установка для получения диффузионных покрытий в циркулирующей газовой среде...
Тип: Изобретение
Номер охранного документа: 0002305141
Дата охранного документа: 27.08.2007
22.04.2019
№219.017.3674

Способ получения защитного покрытия на деталях

Изобретение относится к покрытиям, защищающим детали от воздействия высоких температур, и может быть использовано в авиадвигателестроении, машиностроении, энергетике и других отраслях техники. На поверхность детали наносят, по меньшей мере, один металлический слой. Затем проводят алитирование...
Тип: Изобретение
Номер охранного документа: 0002305034
Дата охранного документа: 27.08.2007
Показаны записи 21-30 из 84.
27.09.2014
№216.012.f8b9

Двенадцатипульсный трансформаторный преобразователь напряжения

Предлагаемое изобретение относится к преобразовательной технике и может быть использовано при создании преобразователей для регулируемых электроприводов постоянного и переменного тока. Двенадцатипульсный трансформаторный преобразователь напряжения работает следующим образом. При подключении...
Тип: Изобретение
Номер охранного документа: 0002529510
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ffed

Устройство для синтеза покрытий

Изобретение относится к вакуумно-плазменной технике, а именно к источникам атомов металла, преимущественно для синтеза на изделиях в вакуумной камере износостойких нанокомпозитных покрытий, и к источникам быстрых молекул газа, преимущественно для очистки и нагрева изделий перед синтезом...
Тип: Изобретение
Номер охранного документа: 0002531373
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1bbf

Устройство для профилирования шлифовального круга алмазным стержневым правящим инструментом

Изобретение относится к металлообработке и может быть использовано для профилирования шлифовального круга алмазным стержневым правящим инструментом. Устройство содержит исполнительный механизм правящего инструмента с исполнительным узлом, на котором зафиксирован правящий инструмент с...
Тип: Изобретение
Номер охранного документа: 0002538531
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.29f6

Способ получения композиционных покрытий из порошковых материалов

Изобретение относится к способу получения композиционных покрытий из порошковых материалов и может быть использовано в машиностроительном производстве при изготовлении и ремонте деталей технологической оснастки и инструмента. Изобретение позволяет получить бездефектное износостойкое покрытие с...
Тип: Изобретение
Номер охранного документа: 0002542199
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2cbe

Порошковая композиционная смесь для лазерной наплавки на металлическую подложку

Изобретение относится к композиции, применяемой в технологии лазерной наплавки покрытий на металлическую подложку, и может быть использовано в инструментальном производстве при изготовлении и ремонте деталей технологической оснастки и инструмента. Техническим результатом, на достижение которого...
Тип: Изобретение
Номер охранного документа: 0002542922
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.349b

Способ получения нанокомпозита из керамического порошка

Изобретение относится к технологии получения керамических материалов - нанокомпозитов на основе нитрида кремния (SiN), и может быть использовано в различных областях науки и техники. Способ получения нанокомпозита включает смешивание керамических частиц SiN в этаноле с последующим добавлением в...
Тип: Изобретение
Номер охранного документа: 0002544942
Дата охранного документа: 20.03.2015
10.07.2015
№216.013.5cd2

Устройство для получения изделий из композиционных порошков

Изобретение относится к получению изделий искровым плазменным спеканием композиционных порошков под давлением. Устройство содержит верхний и нижний пуансоны-токоподводы и выполненную из токопроводящего материала матрицу с изоляционной втулкой, верхней втулкой-токоподводом и нижней...
Тип: Изобретение
Номер охранного документа: 0002555303
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8c87

Способ изготовления композитных керамических изделий

Изобретение относится к инструментальной промышленности, в частности к обработке металлов резанием, и может быть использовано при изготовлении режущих керамических пластин. В способе изготовления композитных изделий, включающем подготовку исходной шихты, содержащей смесь порошка оксида...
Тип: Изобретение
Номер охранного документа: 0002567582
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.904b

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку...
Тип: Изобретение
Номер охранного документа: 0002568555
Дата охранного документа: 20.11.2015
+ добавить свой РИД