×
01.03.2019
219.016.cdce

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОГО ШТРИПСА ДЛЯ МАГИСТРАЛЬНЫХ ТРУБ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к технологии прокатки высокопрочного штрипса для магистральных труб из низколегированной стали на реверсивном толстолистовом стане. Для повышения качества высокопрочного штрипса непрерывнолитую заготовку предварительно подвергают перекристаллизационному нагреву до температуры выше Аr на 20-60°С, выдержке при указанной температуре в течение 1-3,5 часов после ее полного прогрева и охлаждению до температуры не выше 100°С со скоростью не более 50°С/час, затем проводят аустени-зацию непрерывнолитой заготовки, черновую прокатку, подстуживание раската на воздухе перед чистовой прокаткой, чистовую прокатку, ускоренное охлаждение штрипса до заданной температуры и последующее замедленное охлаждение штрипсов в стопе. Технический результат достигается также тем, что штрипсы прокатывают из низколегированной стали с содержанием углерода не более 0,1% и марганца не более 1,9%, причем перекристаллизационный нагрев с регламентированным охлаждением осуществляют до получения средних размеров аустенитного зерна в непрерывнолитой заготовке не более 200 мкм при одновременном снижении развития ликвационной полосы или ее устранении, а средний размер действительного зерна феррита на штрипсе составляет 3÷6 мкм. 1 з.п. ф-лы.

Изобретение относится к области обработки металлов давлением, в частности к технологии прокатки высокопрочного штрипса для магистральных труб из низколегированной стали на реверсивном толстолистовом стане.

Известен способ производства хладостойкого листового проката, включающий аустенизацию непрерывнолитой заготовки, черновую прокатку этой заготовки на реверсивном толстолистовом стане до получения заданной толщины и ширины промежуточной заготовки, подстуживание полученной промежуточной заготовки естественным образом на воздухе, чистовую прокатку на реверсивном толстолистовом стане до получения заданной толщины готового штрипса, а также регламентированное ускоренное охлаждение готового штрипса за счет подачи воды на лицевые поверхности и его последующее замедленное охлаждение, которое производят на воздухе после штабелирования полученных штрипсов в стопу [1].

При реализации этого способа используют непрерывнолитую заготовку, характеризующуюся крупнозернистой структурой с наличием осевой ликвационной полосы. Получить мелкозернистую структуру на готовом прокате частично удается за счет оптимизации температурно-скоростного режима деформации заготовки на реверсивном толстолистовом стане. Важную роль играет также подстуживание полученной промежуточной заготовки (подката), осуществляемое во время специальной междеформационной паузы между черновой и чистовой прокаткой, позволяющее избежать деформации металла в неблагоприятном температурном диапазоне.

Однако данная технология не всегда обеспечивает получение требуемых прочностных и пластических свойств готового штрипса, соответствующих современным требованиям к материалу труб большого диаметра для магистральных трубопроводов. Это связано с недостаточной проработкой структуры стали, особенно при прокатке толстого штрипса. В этом случае повышается влияние исходной структуры непрерывнолитой заготовки и наличие ликвационной полосы по ее оси на свойства готового проката. Практика показывает, что чем меньше зерно исходной заготовки и чем менее явно выражена ликвационная полоса, тем выше уровень механических свойств штрипса.

Очевидно, что необходимость расширения производства новых видов штрипса для магистральных труб обуславливает целесообразность создания технических решений, способствующих повышению уровня механических свойств за счет получения мелкодисперсной структуры готового проката. К таким техническим решениям относится способ производства высокопрочного штрипса для магистральных труб из низколегированных сталей, обеспечивающий повышение уровня прочностных свойств рассматриваемого штрипса до категории прочности Х90(K70)-Х100.

Технический результат изобретения - повышение уровня прочностных свойств до категории прочности Х90(К70)-Х100 за счет улучшения исходной структуры непрерывнолитой заготовки.

Технический результат достигается тем, что в способе производства штрипса для магистральных труб из низколегированной стали, включающем аустенизацию непрерывнолитой заготовки, черновую прокатку, подстуживание раската на воздухе перед чистовой прокаткой, чистовую прокатку, ускоренное охлаждение штрипса до заданной температуры и последующее замедленное охлаждение штрипсов в стопе, согласно предложению перед аустенизацией непрерывнолитую заготовку подвергают перекристаллизационному нагреву до температуры выше Arз на 20÷60°C, выдержке при указанной температуре в течение 1÷3,5 часов после ее полного прогрева и охлаждению до температуры не выше 100°C со скоростью не более 50°C/час.

Технический результат достигается также тем, что штрипсы прокатывают из низколегированной стали с содержанием углерода не более 0,1% и марганца не более 1,9%, причем перекристаллизационный нагрев с регламентированным охлаждением осуществляют до получения средних размеров аустенитного зерна в непрерывнолитой заготовке не более 200 мкм при одновременном снижении развития ликвационной полосы или ее устранении, а средний размер действительного зерна феррита на штрипсе составляет 3÷6 мкм.

Сущность изобретения состоит в следующем.

Перед аустенизацией непрерывнолитую заготовку нагревают до температуры, превышающей температуру Arз на 20÷60°C. Для получения равновесной структуры металла по всему сечению непрерывнолитой заготовки производят выдержку этой заготовки при указанной температуре в течение 1÷3,5 часов и последующее охлаждение со скоростью не более 50°C/час до температуры не выше 100°C. При этом происходит перекристаллизация крупного зерна. Затем заготовку извлекают из нагревательной печи, складируют в стопу с другими заготовками и выдерживают на воздухе, пока металл не остынет ниже 100°C. При такой предварительной обработке заготовки достигается получение равновесной литой структуры, измельчение исходного зерна аустенита и снижение развитости ликвационной полосы.

Затем производят аустенизацию прошедшей улучшение структуры непрерывнолитой заготовки, черновую прокатку этой заготовки на реверсивном толстолистовом стане до получения заданной толщины и ширины промежуточной заготовки, ее подстуживание естественным образом на воздухе, чистовую прокатку на реверсивном толстолистовом стане до получения заданной толщины готового штрипса, а также регламентированное ускоренное охлаждение полученного штрипса за счет подачи воды на лицевые поверхности и его последующее замедленное охлаждение, которое также производят на воздухе после штабелирования полученных штрипсов в стопу. Полученный штрипс из низколегированной стали характеризуется мелкодисперсной структурой, слаборазвитой ликвационной полосой или ее отсутствием и соответственно более высоким уровнем механических свойств.

Таким образом, применение способа прокатки по п.1 способствует получению требуемого технического результата, предусматривающего повышение уровня прочностных свойств до категории прочности Х90(К70)-Х100 высокопрочного штрипса для труб большого диаметра при прокатке на реверсивном толстолистовом стане за счет улучшения структурных характеристик используемой непрерывнолитой заготовки (измельчения структуры и снижения негативного влияния ликвационной полосы).

Штрипс прокатывают из низколегированной стали с содержанием углерода не более 0,1% и марганца не более 1,9%, причем перекристаллизационную термическую обработку осуществляют до получения средних размеров аустенитного зерна в непрерывнолитой заготовке не более 200 мкм при одновременном снижении развития ликвационной полосы. Такое зерно аустенита в исходной заготовке обеспечивает для данного химического состава максимальный размер аустенитного зерна в деформированном металле не более 50÷60 мкм. При этих условиях средний размер действительного зерна феррита на готовом штрипсе составляет 3÷6 мкм, что обеспечивает высокие прочностные и пластические характеристики металла.

Очевидно, что использование предложенного способа прокатки по п.2 также способствует повышению уровня прочностных свойств до категории прочности Х90(К70)-Х100 высокопрочного штрипса для труб большого диаметра при прокатке на реверсивном толстолистовом стане, поскольку размер зерен феррита, получаемых из непрерывнолитой заготовки с указанным размером зерна аустенита в результате прокатки и ускоренного охлаждения, обеспечивает максимальную долю вязкой составляющей при испытаниях на KV и ИПГ.

Сущность изобретения поясняется примером его реализации при производстве штрипса размером 23,2×3830×12000 мм, категории прочности K70. С целью экспериментального определения оптимальных параметров процесса использовали непрерывнолитые заготовки с размерами 310×1996×2226 мм, содержащие 0,07% углерода, 1,4% марганца, а также кремний, ниобий, молибден, никель, хром, медь, титан, ванадий. Перед началом прокатки производили предварительный перекристаллизационный нагрев указанных заготовок до температуры 930°C, соответствующей Ar3+40°C. При этом после полного прогрева каждой заготовки производили ее выдержку при указанной температуре в течение 2 часов. Затем заготовки выгружали из печи, штабелировали в стопу и осуществляли охлаждение штабелированных заготовок в естественных условиях со скоростью 30÷35°C 7 час до температуры 50°C. При этом за счет перекристаллизации структуры стали получали более равновесную структуру со средней величиной аустенитного зерна, уменьшенной до 180-200 мкм. Одновременно происходило снижение развития или устранение ликвационной полосы в осевой зоне заготовки. Замедленное охлаждение обеспечивало снятие возможных внутренних напряжений в материале заготовки.

Затем заготовку с облагороженной структурой нагревали до температуры аустенизации 1200°C, при которой происходит растворение дисперсных карбонитридных упрочняющих частиц, и выдерживали при этой температуре до равномерного прогрева. После выдачи из печи осуществляли прокатку по заданному температурно-деформационному режиму, принятому для данного сортамента штрипса. Черновую прокатку заготовки производили до толщины 150 мм. Полученную промежуточную заготовку подстуживали на рольганге стана до температуры 800°C путем ее естественного охлаждения на воздухе.

Чистовую прокатку заготовки после подстуживания производили на размер готового штрипса 23,2×3830×12000 мм (после резки в меру). После чистовой прокатки полученный штрипс подвергали ускоренному водяному охлаждению в специальной установке. Эта операция направлена на повышение дисперсности структурных составляющих, соответствующих верхней области бейнитного превращения. Последующее замедленное охлаждение металла осуществляли путем выдержки на воздухе штабелированной стопы горячекатаных штрипсов до комнатной температуры. Указанное замедленное охлаждение способствовало снятию внутренних термических напряжений в материале штрипса. В результате был получен штрипс под трубу ⌀1220 мм и длиной 12000 мм со средним размером действительного зерна феррита на готовом прокате 3÷6 мкм.

Механические свойства определяли на поперечных образцах. Температурно-деформационный режим прокатки обеспечил получение мелкозернистой ферритобейнитной структуры с заметной поперечной и продольной анизотропией зерен. Отмечено наличие в структуре 70÷75 об.% глобулярного бейнита реечной морфологии, что позволило получить высокую прочность проката без снижения низкотемпературной вязкости. Испытания на статическое растяжение осуществляли на плоских пропорциональных полнотолщинных образцах по ГОСТ 1497. Получены следующие прочностные свойства для поперечных образцов: временное сопротивление σв=750÷780 Н/мм2; предел текучести σт=630÷675 Н/мм2. Для штрипса категории прочности K70 нормативный уровень этих прочностных свойств составляет: временное сопротивление σв =690÷971 Н/мм2; предел текучести σт≥590 Н/мм2 [2]. Указанный уровень свойств полностью соответствует требованиям, предъявляемым к штрипсу категории прочности К70.

Таким образом, применение предложенного способа прокатки обеспечивает достижение требуемого результата - получение на толстолистовом реверсивном стане высокопрочного штрипса для труб большого диаметра за счет улучшения исходной структуры непрерывнолитой заготовки.

Оптимальные параметры реализации способа были определены эмпирическим путем. Экспериментально установлено, что при предварительном нагреве сляба до температуры ниже Arз+20°C не достигается перекристаллизация аустенитной структуры со снижением размера зерна, что препятствует получению требуемого уровня свойств готового проката. Увеличение температуры нагрева выше Arз+60°C приводит к интенсивному росту зерен аустенита и снижению прочностных свойств толстых листов.

Из опыта установлено, что если после полного прогрева заготовки выдержку при заданной температуре производят в течение менее 1 часа, то перекристаллизация аустенитной структуры на рассматриваемом сортаменте не успеет завершиться. В случае выдержки при заданной температуре более 3,5 часов можно отметить чрезмерный рост аустенитных зерен в металле непрерывнолитой заготовки, сопровождающийся снижением прочностных характеристик готового проката.

В ходе эксперимента варьировали скорость охлаждения заготовок после перекристаллизационного нагрева. Опытным путем установлено, что при скорости охлаждения штабелированных в стопу заготовок свыше 50°C/час сохраняется возможность появления внутренних напряжений в металле, что неблагоприятно сказывается на уровне механических свойств готового штрипса. Подобное явление было отмечено и при охлаждении заготовок до температуры выше 100°C.

Установлено, что если перекристаллизационный нагрев непрерывнолитых заготовок осуществлять до получения аустенитного зерна со средним размером более 200 мкм, то не всегда удается обеспечить требуемый уровень механических свойств готового проката, поскольку размер зерен феррита будет существенно превышать 3÷6 мкм. Однако если размер зерна феррита в готовом прокате превышает 6 мкм, повышается вероятность снижения прочностных свойств металла ниже допустимых значений. Кроме того, в этом случае в непрерывнолитой заготовке сохраняется явновыраженная ликвационная полоса, которая переходит в готовый штрипс и способствует снижению его коррозионной стойкости. В то же время, для штрипса с зерном феррита менее 3 мкм характерно существенное снижение пластических характеристик, что также недопустимо. Соответственно при предварительном нагреве с целью перекристаллизации необходимо получать размер аустенитного зерна в заготовке не более 200 мкм. Это позволяет обеспечить средний размер действительного зерна феррита на готовом прокате в диапазоне 3÷6 мкм.

В ходе эксперимента определено, что выявленные закономерности действуют при использовании низколегированной стали с содержанием углерода не более 0,1% и марганца не более 1,9%. При превышении содержания одного из указанных элементов выше допустимых пределов характер структурообразования при производстве штрипса меняется и не позволяет получать достаточно мелкозернистую структуру, обеспечивающую высокие прочностные свойства.

Таким образом, полученные данные подтверждают правильность рекомендаций по выбору величины технологических параметров предложенного способа. Реализация данного технического решения позволяет повысить качество высокопрочного штрипса для магистральных труб из низкоуглеродистой стали за счет снижения негативного влияния ликвационной полосы и улучшения исходной структуры непрерывнолитой заготовки, используемой для прокатки на реверсивном стане.

Источники информации

1. Патент РФ №2265067, МПК C21D 8/02, 2005 г.

2. В.В.Рыбин, В.А.Малышевский, Е.И.Хлусова и др. Высокопрочные стали для трубопроводов. Вопросы материаловедения. Научно-технический журнал №3(59). Выпуск к 70-летию ФГУП ЦНИИ КМ «ПРОМЕТЕЙ», 2009 г., стр.128.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 104.
01.03.2019
№219.016.ca40

Способ напыления алюминиевого газотермического покрытия на заготовки для нагрева их под прокатку

Изобретение относится к области металлургии и может быть использовано при нагреве непрерывнолитых слябов из низколегированной стали под прокатку и последующей их прокатке. Предложенный способ напыления алюминиевого газотермического покрытия на прямоугольные стальные слябы для нагрева их под...
Тип: Изобретение
Номер охранного документа: 0002256002
Дата охранного документа: 10.07.2005
01.03.2019
№219.016.ca5c

Способ восстановительного ремонта системы охлаждения шахты доменной печи

Изобретение относится к металлургии, в частности к восстановительному ремонту системы охлаждения. Способ включает замену вышедших из строя горизонтальных холодильников по высоте охлаждаемой части шахты доменной печи, которая заключается в том, что между стыками вертикальных холодильников через...
Тип: Изобретение
Номер охранного документа: 0002258742
Дата охранного документа: 20.08.2005
01.03.2019
№219.016.cb1a

Способ производства толстых листов

Изобретение относится к металлургии, конкретнее к производству листов толщиной 20-50 мм из углеродистых и низколегированных сталей конструкционного назначения. Способ включает нагрев заготовок, горячую прокатку с обжатием по толщине в регламентированном температурном интервале и охлаждение...
Тип: Изобретение
Номер охранного документа: 0002348702
Дата охранного документа: 10.03.2009
01.03.2019
№219.016.cb1b

Способ вакуумного рафинирования жидкой стали в ковше

Изобретение относится к черной металлургии, а именно к обработке жидкой стали в ковше. Способ включает регулирование давления над поверхностью жидкой стали и расход аргона в зависимости от содержания азота в откачиваемом газе, изменения скорости выделения оксида углерода и величины подъема...
Тип: Изобретение
Номер охранного документа: 0002348699
Дата охранного документа: 10.03.2009
01.03.2019
№219.016.cb29

Способ отжига холоднокатаных рулонов из малоуглеродистой стали

Изобретение относится к области металлургии и может быть использовано для термообработки рулонов холоднокатаных полос из малоуглеродистой стали, стабилизированной алюминием, в колпаковой муфельной печи с газовым отоплением и водородной защитной атмосферой. Для уменьшения расхода топлива и...
Тип: Изобретение
Номер охранного документа: 0002346062
Дата охранного документа: 10.02.2009
01.03.2019
№219.016.cb2a

Способ производства штрипсов

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах полос для электросварных прямошовных обсадных труб, предназначенных для обустройства нефтяных и газовых скважин. Для повышения...
Тип: Изобретение
Номер охранного документа: 0002346060
Дата охранного документа: 10.02.2009
01.03.2019
№219.016.cb30

Способ теплоизоляции внешних поверхностей рулона горячекатаной полосы и устройство для его реализации

Изобретение предназначено для выравнивания значений физико-механических свойств металла по длине готовой горячекатаной полосы при охлаждении рулонов полосы. На поверхность рулона, достигшего температуры ниже, чем температура смотки полосы в рулон, наносят слой термоизолирующего порошка....
Тип: Изобретение
Номер охранного документа: 0002345858
Дата охранного документа: 10.02.2009
01.03.2019
№219.016.cb3a

Способ производства толстолистового низколегированного штрипса

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов из низколегированных сталей. Для повышения прочностных свойств при сохранении достаточной пластичности и увеличении хладостойкости штрипса...
Тип: Изобретение
Номер охранного документа: 0002390568
Дата охранного документа: 27.05.2010
01.03.2019
№219.016.cb56

Способ производства штрипсов из низколегированной стали

Изобретение относится к области обработки металлов давлением, в частности к технологии прокатки на реверсивном толстолистовом стане. Для повышения производительности процесса прокатки штрипса для труб большого диаметра при обеспечении стабильного уровня механических свойств получают...
Тип: Изобретение
Номер охранного документа: 0002391415
Дата охранного документа: 10.06.2010
01.03.2019
№219.016.cb5a

Подушка прокатного валка

Изобретение относится к прокатному производству, преимущественно к фиксированным в осевом направлении подушкам рабочих валков четырех валковых клетей листовых прокатных станов с опорами валков на подшипниках качения. Подушка включает четырехрядный роликовый конический подшипник, закрытый...
Тип: Изобретение
Номер охранного документа: 0002391157
Дата охранного документа: 10.06.2010
Показаны записи 31-40 из 83.
29.12.2017
№217.015.f340

Способ производства толстолистового штрипса из низколегированной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при производстве толстолистового штрипса из низколегированной стали толщиной от 10 до 15 мм. Для получения штрипса класса прочности 365 МПа и выше с гарантией ударной вязкости при...
Тип: Изобретение
Номер охранного документа: 0002637544
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.fc6a

Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения

Изобретение относится к области металлургии, а именно к производству горячекатаных листов из низколегированной стали толщиной от 15 до 165 мм для изготовления, например, запорной арматуры нефтегазопроводов, а также конструкций, работающих при низких температурах до -60°С. Сталь имеет следующий...
Тип: Изобретение
Номер охранного документа: 0002638479
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.04cc

Толстый лист из конструкционной стали для изготовления деталей сварных конструкций и способ его получения в нормализованном состоянии

Изобретение относится к области металлургии. Для обеспечения свариваемости и повышенной работы удара при низких температурах стальной лист толщиной до 50 мм содержит, мас. %: C 0,10-0,14, Si 0,16-0,30, Mn 1,35-1,60, Al 0,02-0,05, S не более 0,005, P не более 0,018, Ti 0,010-0,025, Nb...
Тип: Изобретение
Номер охранного документа: 0002630721
Дата охранного документа: 12.09.2017
20.01.2018
№218.016.1020

Способ производства горячекатаных листов из низколегированной стали

Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного листа толщиной 48-100 мм из низколегированной стали для изготовления конструкций ответственного назначения, работающих под давлением при температуре до -70°C. Для обеспечения механических...
Тип: Изобретение
Номер охранного документа: 0002633684
Дата охранного документа: 16.10.2017
10.05.2018
№218.016.4186

Толстый лист из дисперсионно-твердеющей стали для горячей штамповки и способ его получения

Изобретение относится к области металлургии, в частности к производству толстого листа из низколегированной дисперсионно-твердеющей стали. Для обеспечения комплекса свойств, соответствующих классам прочности К60-К65, получают лист толщиной до 52 мм с уровнем прочности не менее 590 МПа,...
Тип: Изобретение
Номер охранного документа: 0002649110
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4d11

Способ производства горячекатаных листов из высокопрочной стали

Изобретение относится к области металлургии, а именно к производству толстых стальных листов, используемых для элементов конструкций, эксплуатируемых в арктических условиях, например для производства корпусов ледоколов и крупнотоннажных судов. Для получения листа толщиной до 70 мм с пределом...
Тип: Изобретение
Номер охранного документа: 0002652281
Дата охранного документа: 25.04.2018
19.12.2018
№218.016.a87d

Способ производства низколегированных рулонных полос с повышенной коррозионной стойкостью

Изобретение относится к области металлургии, конкретнее, для получения рулонного полосового проката с низкой скоростью коррозии при сохранении уровня прочностных и пластических характеристик, соответствующего категории прочности К52, осуществляют аустенизацию заготовки при 1200-1280°С, черновую...
Тип: Изобретение
Номер охранного документа: 0002675307
Дата охранного документа: 18.12.2018
08.02.2019
№219.016.b851

Способ производства особо тонких горячекатаных полос на широкополосном стане литейно-прокатного комплекса

Изобретение относится к области прокатки полос толщиной 1-1,5 мм на широкополосном стане литейно-прокатного комплекса. Способ включает выплавку плоской непрерывнолитой полосовой заготовки, ее порезку на мерные длины с последующим подогревом в туннельной печи и поштучную прокатку подогретых...
Тип: Изобретение
Номер охранного документа: 0002679159
Дата охранного документа: 06.02.2019
09.02.2019
№219.016.b86d

Способ производства низкоуглеродистой стали с повышенной коррозионной стойкостью

Изобретение относится к области черной металлургии и может быть использовано для получения низкоуглеродистых сталей с повышенной коррозионной стойкостью для производства полосового проката. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск жидкого металла в...
Тип: Изобретение
Номер охранного документа: 0002679375
Дата охранного документа: 07.02.2019
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
+ добавить свой РИД