×
10.05.2018
218.016.4186

Результат интеллектуальной деятельности: Толстый лист из дисперсионно-твердеющей стали для горячей штамповки и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к производству толстого листа из низколегированной дисперсионно-твердеющей стали. Для обеспечения комплекса свойств, соответствующих классам прочности К60-К65, получают лист толщиной до 52 мм с уровнем прочности не менее 590 МПа, выполненный из стали, содержащей, мас.%: углерод 0,04-0,07, кремний 0,20-0,35, марганец 0,70-1,30, алюминий 0,02-0,05, сера не более 0,005, фосфор не более 0,012, хром 0,20-0,45, никель 0,40-0,65, медь 0,90-1,35, титан 0,015-0,030, ниобий 0,02-0,05, ванадий 0,02-0,06, суммарное содержание элементов ванадий, ниобий, титан не более 0,16; азот не более 0,01, железо и примеси остальное с углеродным эквивалентом (CE) не более 0,45%. Способ получения листа включает аустенизацию непрерывнолитой заготовки до температуры 1190-1230°C, черновую прокатку с регламентированным обжатием за проход при температуре начала не ниже 950°C и до достижения промежуточным раскатом толщины, обеспечивающей суммарное обжатие на стадии чистовой прокатки не менее 50%, подстуживание раската, чистовую прокатку при температуре её начала, определяемой из соотношения Тнчп=(-2,5×h+870)±15°C, где Тнчп - температура начала чистовой прокатки, [°C], h - толщина листа, [мм], 2,5 - эмпирический коэффициент, [°C/мм] и завершают при температуре 770-820°C, после чего лист ускоренно охлаждают до температуры ниже 550°C. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, в частности к производству низколегированной дисперсионно-твердеющей стали, используемой при изготовлении соединительных деталей магистральных трубопроводов (СДТ) штампосварным способом.

Известна аустенитная дисперсионно-твердеющая сталь для изготовления высоконагруженных деталей, работающих в кислых сероводородосодержащих средах (Патент РФ №2415962, МПК С22С 38/50, опубл. 20.07.2010 г.). Сталь содержит углерод, хром, никель, титан, молибден, алюминий и железо при следующем соотношении компонентов, мас. %:

хром 10,0-12,5
никель 22,0-24,0
титан 2,7-3,1
молибден 1,0-1,6
алюминий не более 0,8
углерод 0,03-0,07
железо остальное

Сталь обладает повышенной стойкостью к растрескиванию под напряжением в сероводородсодержащих средах и стабильными механическими свойствами: предел текучести не менее 725 МПа, а твердость не более 35 HRC.

Недостатком данной стали является необходимость выполнения длительного процесса термообработки для активации дисперсионного твердения, что не позволяет использовать это явление для упрочнения стали непосредственно в процессе штамповки заготовок для СДТ. Недостатком стали является и ее высокая стоимость.

Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства толстолистового проката из низколегированной стали, имеющей следующий химический состав, мас. %:

углерод 0,03-0,07
кремний 0,20-0,40
марганец 1,4-1,8
алюминий 0,02-0,05
ниобий 0,03-0,06
титан 0,01-0,04
ванадий 0,06-0,09
хром 0,10-0,30
никель 0,20-0,50
медь 0,10-0,30
молибден 0,08-0,17
сера не более 0,005
фосфор не более 0,015
азот не более 0,011
железо остальное

Способ включает нагрев слябов до 1170-1190°C, многопроходную черновую и чистовую прокатку при температуре начала не выше 970°C с суммарным обжатием 50-70% и завершением при температуре не выше 900°C. Горячекатаные листы подвергают нормализации при температуре 910-940°C с охлаждением на воздухе, а перед горячей прокаткой непрерывнолитые слябы подвергают отжигу при температуре не выше 750°C (Патент РФ №2318027, МПК C21D 8/02, С22С 38/58, опубл. 27.02.2008 г.).

Недостатком данной стали является необходимость проведения дополнительной операции, а именно термообработки как слябов из нее (отжиг), так и листов (нормализация).

Цель предлагаемого изобретения состоит в получении проката толщиной до 52 мм с комплексом свойств, соответствующих классам прочности К60-К65 после нормализации с последующим отпуском, и обеспечение гарантированного комплекса этих свойств при получении изделия из переработанного проката у потребителя без дополнительных операций по термообработке.

Указанная цель достигается тем, что толстый лист из дисперсионно-твердеющей стали для горячей штамповки имеет уровень прочности не менее 590 МПа и выполнен из стали со следующим содержанием компонентов, мас. %:

углерод 0,04-0,07
кремний 0,20-0,35
марганец 0,70-1,30
алюминий 0,02-0,05
сера не более 0,005
фосфор не более 0,012
хром 0,20-0,45
никель 0,40-0,65
медь 0,90-1,35
титан 0,015-0,030
ниобий 0,02-0,05
ванадий 0,02-0,06
суммарное содержание элементов
ванадий, ниобий, титан не более 0,16
азот не более 0,01
железо и примеси остальное

причем углеродный эквивалент (CEIIW) должен быть не более 0,45%. Цель также достигается тем, что в способе получения толстого листа из дисперсионно-твердеющей стали для горячей штамповки по п. 1, включающем аустенизацию непрерывнолитой заготовки, черновую прокатку с регламентированным обжатием за проход, подстуживание раската, чистовую прокатку и ускоренное охлаждение, аустенизацию непрерывнолитой заготовки производят до температуры 1190-1230°C, черновую прокатку начинают при температуре не ниже 950°C и осуществляют ее до достижения промежуточным раскатом толщины, обеспечивающей суммарное обжатие на стадии чистовой прокатки не менее 50%, а чистовую прокатку начинают при температуре, определяемой в зависимости от толщины листа из соотношения

Тнчп=(-2,5×h+870)±15°C, где

Тнчп - температура начала чистовой прокатки, [°C],

h - толщина листа, [мм],

2,5 - эмпирический коэффициент, [°С/мм],

и завершают при температуре 770-820°C, после чего лист ускоренно охлаждают до температуры ниже 550°C.

Сущность предлагаемого изобретения заключается в следующем.

Толстый лист из дисперсионно-твердеющей стали для горячей штамповки получают с уровнем прочности не менее 590 МПа, обеспечиваемым сочетанием разработанной композиции химического состава стали и технологии производства листа. Толстый лист выполнен из стали с содержанием компонентов, выбранных исходя из следующих причин.

Углерод в данной стали является одним из основных упрочняющих элементов. Снижение содержания углерода менее 0,04% приводит к падению ее прочности ниже допустимого уровня. Увеличение содержания углерода более 0,07% ухудшает пластические и вязкостные свойства стали, приводит к их неравномерности из-за развития ликвационной неоднородности.

При содержании кремния менее 0,20% ухудшается раскисленность стали, снижается прочность. Увеличение содержания кремния более 0,35% приводит к росту количества силикатных включений, снижается ударная вязкость.

Снижение содержания марганца менее 0,7% увеличивает окисленность стали, ухудшает ее качество. Повышение содержания марганца более 1,3% увеличивает зерно, снижает ударную вязкость.

Алюминий раскисляет и модифицирует сталь. При концентрации менее 0,02% его воздействие проявляется слабо, что ухудшает механические свойства стали. Увеличение его содержания более 0,05% приводит к снижению пластических и вязкостных свойств.

Сера и фосфор являются вредными примесями, их концентрация должна быть минимальной, однако при концентрации серы не более 0,005% и фосфора не более 0,012% их отрицательное влияние на свойства стали незначительно. При этом дальнейшее снижение примесей возможно только за счет более глубокой десульфурации и дефосфорация стали, что существенно удорожает ее производство и нецелесообразно.

Добавка хрома в количестве не менее 0,20% вводится для снижения уровня ликвации при затвердевании расплава, добавка не более 0,45% необходима для управления механизмом твердорастворного упрочнения и увеличения предела текучести до 40 Н/мм2.

Никель в количестве более 0,4% увеличивает упрочнение твердого раствора и обеспечивает большую эффективность дисперсионного упрочнения совместно с медью, кроме того, при введении добавок никеля в количестве не более 0,65% понижается температура вязко-хрупкого перехода и повышается величина работы развития трещины.

Для достижения высоких классов прочности у нормализуемых марок стали необходимо реализовать как механизмы твердорастворного упрочнения и эффект увеличения прокаливаемости, например, с помощью никеля и хрома, так и упрочнение за счет дисперсионного твердения, например, частицами меди. Для этого содержание меди в стали должно быть не менее 0,9% и не более 1,35%, что ограничено повышением риска возникновения горячих трещин при прокатке.

Содержание титана ограничивается 0,015-0,030% для предотвращения формирования при кристаллизации крупных частиц TiN и/или комплексных глобулярных частиц на их основе, содержащих Nb, Ca, Mg, S, О, а также чрезмерного роста зерна аустенита при нагреве, что приводит к огрублению микроструктуры листов и снижению уровня механических свойств.

Содержание ниобия ограничивается до уровня 0,050% для снижения ликвационной неоднородности, предотвращения образования крупных конгломератов комплексных частиц Ti, Nb (С, N), в количестве не менее 0,020% ниобий необходим для торможения роста зерна при прокатке.

Ванадий является карбонитридообразующим элементом, повышающим прочность. Экспериментально установлено, что его добавление в количестве менее 0,02% не эффективно, однако добавление ванадия более 0,060% приводит к снижению вязкостных свойств стали.

Суммарное содержание ванадия, ниобия и титана ограничено 0,16%, оно определено исходя из максимальной эффективности этих элементов при активации механизма дисперсионного упрочнения: образование карбида каждого элемента протекает в различных температурных интервалах, увеличение их суммарного содержания выше 0,16% приводит к торможению процесса карбидообразования и неэффективному их использованию в системе легирования.

Азот необходим для выделения мелкодисперсных нитридов и сдерживания укрупнения аустенитных зерен. При содержании азота свыше 0,01% ухудшается пластичность и вязкость стали, повышается температура перехода от вязкого разрушения к хрупкому.

Углеродный эквивалент Сэкв ограничен величиной 0,45% для получения стали хорошо сваривающейся.

Для получения толстого листа с уровнем прочности от 590 до 640 МПа содержание следующих элементов в химическом составе стали обеспечивают в пределах, %:

углерод 0,04-0,07
марганец 1,00-1,30
медь 0,90-1,20

Для получения толстого листа с уровнем прочности свыше 640 МПа содержание следующих элементов в химическом составе стали обеспечивают в пределах, %:

углерод 0,04-0,06
марганец 0,70-1,10
медь 1,20-1,35

При нагреве непрерывнолитой заготовки из стали предлагаемого химического состава до температуры менее 1190°C не происходит эффективного растворения в стальной матрице микролегирующих добавок и, как следствие, их выделения в виде дисперсных фаз при прокатке. При нагреве свыше 1230°C наблюдается укрупнение зерна аустенита.

Температура деформации на черновой стадии прокатки принята не менее 950°C исходя из необходимости измельчения зерна аустенита за счет многократной рекристаллизации.

Максимальное измельчение аустенитного зерна на чистовой стадии достигается при суммарной степени деформации не менее 50%, при дальнейшем ее увеличении в этой области температур размер аустенитного зерна практически не уменьшается.

Температурный интервал начала и окончания деформации на чистовой стадии прокатки выбирают исходя из необходимости подготовки аустенита к последующему превращению путем создания деформированных зерен аустенита, содержащих полосы деформации и имеющих высокую плотность дислокаций, это позволяет максимально измельчить зеренную структуру: температуру начала чистовой прокатки, которая зависит от толщины листа, определяют из соотношения

Тнчп=(-2,5×h+870)±15°C, где

Тнчп - температура начала чистовой прокатки, [°C],

h - толщина листа, [мм],

2,5 - эмпирический коэффициент, [°C/мм],

а температуру окончания устанавливают равной 770-820°C. Эмпирический коэффициент определяют опытным путем. Для эффективной фиксации легирующих элементов в твердом растворе и его подготовке к дисперсионному твердению при последующем нагреве лист ускоренно охлаждают до температуры ниже 550°C.

Реализация предложенного технического решения позволяет получить требуемое качество горячекатаных листов, используемых для изготовления соединительных деталей магистральных трубопроводов штампосварным способом, что достигается за счет выбора рациональных температурно-деформационных режимов для определенного химического состава стали. При выходе варьируемых параметров за указанные границы возможно неполучение стабильно удовлетворительных результатов механических испытаний на пробах, прошедших термическую обработку. Полученные данные подтверждают правильность выбранных значений технологических параметров в рамках предложенного способа производства толстых листов из дисперсионно-твердеющей стали для горячей штамповки, а также способа получения соединительных деталей магистральных трубопроводов.

Применение способа поясняется примером его реализации при производстве листов из стали К60 толщиной 22 мм на толстолистовом стане 5000 ПАО «Северсталь».

Выплавку стали осуществляли в кислородном конвертере вместимостью 370 тн с проведением процесса десульфурации магнием в заливочном ковше. На выпуске проводили первичное легирование, предварительное раскисление и обработку металла твердошлаковыми смесями с продувкой металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработку металла кальцием и перегрев металла для проведения вакуумирования проводили на агрегате комплексной доводки стали. Дегазацию металла осуществляли путем его вакуумирования. Разливку производили на МНЛЗ с защитой металла аргоном от вторичного окисления.

Химический состав стали приведен в таблице 1.

Сталь получена со следующим составом химических элементов, масс. %: С = 0,06; Si = 0,32; Mn = 1,16; Cr = 0,27; Ni = 0,44; Cu = 1,30; Ti = 0,022; V = 0,045; Nb = 0,029; N = 0,005; Al = 0,043; S = 0,002; P = 0,01; железо и примеси - остальное. Углеродный эквивалент составил Сэкв = 0,41%.

Непрерывнолитые заготовки нагревали до температуры 1200°C, черновую прокатку начинали при температуре 1020°C и прокатывали раскат на черновой стадии до толщины подстуживания 110 мм, охлаждали на воздухе до температуры начала чистовой прокатки 814°C (температура задавалась в интервале от 800 (-2,5×22+870-15=800) до 830°C (-2,5×22+870+15=830)), прокатывали на чистовой стадии до конечной толщины 22 мм с суммарным обжатием 80% и окончанием процесса деформации при 808°C. Далее листы ускоренно охлаждали до температуры 350°C.

Испытания на статическое растяжение проводили на пятикратных цилиндрических образцах по ГОСТ 1497, изготовленных из проб, отобранных в поперечном направлении относительно направления прокатки, прошедших имитирующую термическую обработку. Динамические испытания проводили на образцах с V-образным надрезом при температуре минус 43°C по ГОСТ 9454. Варианты реализации предложенного способа и результаты испытаний приведены в таблицах 2 и 3 соответственно.

Результаты испытаний показали, что предлагаемый способ производства стали выбранного химического состава (варианты №2, 3, 4 и 5) обеспечивает удовлетворительный уровень механических свойств после имитации технологических режимов переработки на заводе-изготовителе, определяемых при статических испытаниях образцов на растяжение, а также при динамических испытаниях на маятниковом копре. При запредельных значениях предложенных режимов (варианты №1 и 8, варианты термообработки №1 и 6) и способе-прототипе не удается достигнуть требуемого уровня прочностных и вязкостных свойств на пробах, прошедших термическую обработку ввиду деградации структуры стали.

Таким образом, применение описанного способа прокатки обеспечивает достижение требуемых результатов, а именно получение проката толщиной до 52 мм с комплексом свойств, соответствующих классам прочности К60-К65 после нормализации с последующим отпуском, имитирующим режимы переработки у потребителя.

Также реализация изобретения позволяет обеспечить достижение более высокого класса прочности соединительных деталей для магистральных трубопроводов: К60 и К65 после нормализации с отпуском у потребителя без термического улучшения готовых изделий.

*Примечание: горячекатаные листы подвергают нормализации при температуре 910-940°C с охлаждением на воздухе, а перед горячей прокаткой непрерывно литые слябы подвергают отжигу при температуре не выше 750°C.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 34.
13.01.2017
№217.015.719f

Способ контролируемой прокатки листов и стан для его осуществления

Изобретение относится к области прокатки листов на реверсивных одноклетевых станах. Способ включает нагрев слябов до температуры прокатки, черновую прокатку слябов и чистовую прокатку подкатов, которую производят в одной реверсивной рабочей клети сериями из двух и более штук, при этом черновую...
Тип: Изобретение
Номер охранного документа: 0002596733
Дата охранного документа: 10.09.2016
24.08.2017
№217.015.94fd

Способ формирования шихты для получения металлургического кокса с заданным показателем горячей прочности csr

Изобретение относится к коксохимической промышленности и может быть использовано для подбора угольных шихт для коксования. Для угольных концентратов проводят индивидуальные коксования в лабораторных условиях. Основным показателем, определяемым в полученных пробах кокса, является «горячая»...
Тип: Изобретение
Номер охранного документа: 0002608524
Дата охранного документа: 19.01.2017
25.08.2017
№217.015.b111

Способ изготовления молотка для шредерной установки

Изобретение относится к области металлургии, в частности к изготовлению молотка для шредерной установки, и может быть использовано преимущественно в технологических процессах для измельчения металлолома марок 3АН и 5АТ. Для повышения стойкости молотка, увеличения производительности, а также...
Тип: Изобретение
Номер охранного документа: 0002613266
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b20e

Способ производства горячекатаных листов из низколегированной стали класса прочности к60 для электросварных прямошовных труб

Изобретение относится к области прокатного производства и может быть использовано при производстве горячекатаных листов толщиной до 33 мм. Для обеспечения заданных механических свойств готового проката получают непрерывнолитые заготовки из стали, содержащей, мас.%: 0,07-0,10 углерода, 0,20-0,35...
Тип: Изобретение
Номер охранного документа: 0002613265
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.bab4

Способ производства горячекатаных листов из низколегированной стали класса прочности к65 для электросварных прямошовных труб

Изобретение относится к области металлургии, в частности к производству на реверсивном стане толстых листов из низколегированной стали класса прочности К-65 для изготовления труб магистральных газопроводов высокого давления. Для обеспечения удовлетворительной трещиностойкости стали при...
Тип: Изобретение
Номер охранного документа: 0002615667
Дата охранного документа: 06.04.2017
26.08.2017
№217.015.dad4

Способ производства квадратной заготовки

Изобретение относится к прокатному производству и может быть использовано для изготовления квадратных заготовок из стальных непрерывнолитых слябов. Способ включает изготовление стального непрерывнолитого сляба и его многопроходную прокатку. Расширение технологических возможностей оборудования...
Тип: Изобретение
Номер охранного документа: 0002623976
Дата охранного документа: 29.06.2017
29.12.2017
№217.015.f8bb

Способ получения низколегированной коррозионностойкой стали для производства проката

Изобретение относится к области металлургии, в частности к производству проката из низколегированной коррозионностойкой стали, применяемой для мостостроения, неокрашенных несущих конструкций контактной сети электрифицированных железных дорог, путепроводов автомобильных дорог и других...
Тип: Изобретение
Номер охранного документа: 0002639754
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.fc6a

Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения

Изобретение относится к области металлургии, а именно к производству горячекатаных листов из низколегированной стали толщиной от 15 до 165 мм для изготовления, например, запорной арматуры нефтегазопроводов, а также конструкций, работающих при низких температурах до -60°С. Сталь имеет следующий...
Тип: Изобретение
Номер охранного документа: 0002638479
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fd1a

Опорный узел прокатного валка

Изобретение относится к области прокатного производства. Опорный узел содержит подушку с установленным в ней подшипником жидкостного трения, крышку заднюю с уплотнением, крышку переднюю с упорным подшипником, узел подвода смазки и гибкий маслопровод, соединенный с гидросистемой, узел слива...
Тип: Изобретение
Номер охранного документа: 0002638486
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.04cc

Толстый лист из конструкционной стали для изготовления деталей сварных конструкций и способ его получения в нормализованном состоянии

Изобретение относится к области металлургии. Для обеспечения свариваемости и повышенной работы удара при низких температурах стальной лист толщиной до 50 мм содержит, мас. %: C 0,10-0,14, Si 0,16-0,30, Mn 1,35-1,60, Al 0,02-0,05, S не более 0,005, P не более 0,018, Ti 0,010-0,025, Nb...
Тип: Изобретение
Номер охранного документа: 0002630721
Дата охранного документа: 12.09.2017
Показаны записи 1-10 из 54.
20.08.2013
№216.012.6080

Способ производства толстолистового штрипса для магистральных труб на реверсивном стане

Изобретение относится к области обработки металлов давлением, в частности к способу производства толстолистового штрипса для магистральных труб на реверсивном стане, который включает расчет длины односторонней концевой технологической обрези, равной захоложенной зоне на конце листа, в...
Тип: Изобретение
Номер охранного документа: 0002490336
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.732d

Способ производства толстолистового проката из низколегированной стали

Изобретение относится к металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов с применением контролируемой прокатки. Для повышения прочностных свойств листа толщиной 30-40 мм до уровня DNV 485 IFD при сохранении достаточной...
Тип: Изобретение
Номер охранного документа: 0002495142
Дата охранного документа: 10.10.2013
10.07.2014
№216.012.dd36

Способ производства прямошовных магистральных труб

Изобретение относится к области обработки металлов давлением, в частности к технологии и оборудованию для производства прямошовных магистральных труб в трубоформовочных цехах металлургических предприятий. Способ включает формовку трубы из листовой заготовки с предварительной подгибкой...
Тип: Изобретение
Номер охранного документа: 0002522408
Дата охранного документа: 10.07.2014
10.08.2014
№216.012.e766

Способ нанесения защитного покрытия на внутреннюю поверхность магистральной трубы

Изобретение относится к производству труб большого диаметра для прокладки магистральных трубопроводов. В способе для предварительной очистки внутренней поверхности трубы производят ее обезжиривание щелочным раствором, промывку деионизированной водой и сушку. Затем выполняют струйную очистку...
Тип: Изобретение
Номер охранного документа: 0002525031
Дата охранного документа: 10.08.2014
10.10.2014
№216.012.fae8

Способ производства толстолистового проката для судостроения

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане. Для повышения прочностных свойств проката до уровня судостали категории GL-A36, GL-D36, GL-E36 и др. толщиной 12-50 мм, при сохранении достаточной пластичности...
Тип: Изобретение
Номер охранного документа: 0002530078
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.055a

Способ призводства проката из низколегированной толстолистовой стали

Изобретение относится к области металлургии, в частности к производству изготовления толстолистовой стали для труб с толщиной стенки до 39 мм. Для обеспечения повышенной хладостойкости, высокого уровня сопротивления протяженному вязкому разрушению используют слябовую заготовку толщиной не менее...
Тип: Изобретение
Номер охранного документа: 0002532768
Дата охранного документа: 10.11.2014
10.03.2015
№216.013.2f9d

Способ производства прямошовных магистральных труб

Изобретение относится к области обработки металлов давлением магистральных труб. Способ включает формовку основного контура трубной заготовки из толстолистового проката, последующее соединение продольных боковых кромок отформованной трубной заготовки, приварку к ним технологических планок и...
Тип: Изобретение
Номер охранного документа: 0002543657
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3233

Способ производства толстых листов из низколегированной стали с повышенной коррозионной стойкостью

Изобретение относится к области металлургии, преимущественно к производству толстых листов из низколегированной стали. Для повышения коррозионной стойкости в водородных и сероводородных средах, а также сопротивляемости к хрупкому разрушению при температуре до -10°C непрерывнолитую...
Тип: Изобретение
Номер охранного документа: 0002544326
Дата охранного документа: 20.03.2015
27.04.2015
№216.013.4780

Способ производства толстолистового проката из малоуглеродистой стали на реверсивном стане

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на реверсивном толстолистовом стане. Способ включает нагрев, черновую и чистовую прокатку с промежуточным охлаждением и завершающее ускоренное охлаждение. Снижение неравномерности...
Тип: Изобретение
Номер охранного документа: 0002549808
Дата охранного документа: 27.04.2015
27.08.2015
№216.013.752a

Способ производства толстолистового проката из низколегированной стали

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано при изготовлении проката для труб с толщиной стенки 11-25 мм. Для получения толстолистового проката категории прочности до Х80 с повышенной...
Тип: Изобретение
Номер охранного документа: 0002561569
Дата охранного документа: 27.08.2015
+ добавить свой РИД