×
01.03.2019
219.016.cd4a

Результат интеллектуальной деятельности: ШИРОКОПОЛОСНЫЙ ОБТЕКАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным антенным обтекателям. Задачей изобретения является снижение искажений, вносимых обтекателем, в поле падающей волны в рабочем диапазоне частот. В широкополосном обтекателе, содержащем стенку из диэлектрического материала в форме колпака, снабженном узлом крепления к летательному аппарату, стенка выполнена из материала с частотно-зависимым распределением диэлектрической проницаемости

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным антенным обтекателям.

Известен антенный обтекатель, содержащий стенку из диэлектрического материала в форме колпака, снабженного узлом крепления к летательному аппарату, с диэлектрической стенкой, соответствующей полуволновой электрической толщине на рабочей частоте: Каплун В.А. Обтекатели антенн СВЧ. М.: Советское радио, 1974 г. 238 с. Структура стенки обтекателя состоит из одного или нескольких слоев материалов с известными частотно-независимыми значениями диэлектрической проницаемости в рабочей полосе частот. Геометрическая толщина стенки подбирается эквивалентной полуволновой электрической толщине на средней по диапазону резонансной частоте.

Известно, что реализация на одной частоте полуволновой электрической толщины стенки за счет резонансного согласования стенки со свободным пространством, позволяет получить минимальный уровень отражения падающей волны и максимальную величину прошедшего поля. Это соответственно является условием для получения минимального искажения фазы прошедшего через обтекатель поля падающей волны.

Применение для конструирования стенки обтекателя диэлектрического материала, обладающего частотно-независимой диэлектрической проницаемостью в рабочей полосе частот, приводит к росту или уменьшению электрической толщины стенки при отклонении рабочей частоты от средней, на которую «настроена» стенка обтекателя.

Обтекатель с резонансной стенкой, изготовленный по данному техническому решению, вносит минимально возможные искажения в поле падающей волны на резонансной частоте, но пропорционально увеличению рабочей полосы значительно возрастает величина искажений, вносимых обтекателем в поле падающей волны.

Известен широкополосный обтекатель для совмещенного диапазона с полуволновой стенкой для высокочастотного диапазона (94 ГГц) и соответственно «тонкой» по электрической толщине для диапазона 9,345 ГГц: патент USA №6028565. Н01Q 1/42, 19 ноября 1996 г.

При использовании материалов с частотно-независимыми диэлектрическими свойствами реализация полуволновой электрической толщины стенки обтекателя невозможна для широкой частотной полосы. Поэтому в широкополосном антенном обтекателе, работающем в совмещенных диапазонах, применяется структура стенки с «тонкой» электрической толщиной, менее 0,1 длины волны, за счет снижения геометрической толщины для низкочастотного диапазона, которая является полуволновой по электрической толщине для высокочастотной области. Даже незначительное увеличение электрической толщины стенки вносит обтекателем в падающее поле значительные искажения.

Так как уменьшение толщины стенки ограничивается теплофизическими требованиями к обтекателю, искажения, вносимые в падающее поле из-за конечной толщины стенки, оказываются значительными, что приводит к высоким ошибкам пеленга. Кроме того, из-за отличия электрической толщины стенки от полуволновой, недостатком применения такой структуры является низкий коэффициент прохождения обтекателя.

Наиболее близким техническим решением является антенный обтекатель по патенту RU №2054763, H01Q 1/42, 12.04.1993, содержащий стенку из диэлектрического материала в форме колпака, снабженного узлом крепления к летательному аппарату, для уменьшения искажений вносимых обтекателем в падающее поле в широкой полосе частот, в качестве диэлектрического материала использован диэлектрический материал с тангенсом диэлектрических потерь, лежащим в пределах 0,02<tg(δ)<0,01, а толщина однослойной стенки выбрана из условия

где d - толщина однослойной стенки,

λ - длина волны в свободном пространстве,

ε - диэлектрическая проницаемость диэлектрического материала однослойной стенки.

Недостатком прототипа является то, что при выбранной геометрической толщине и диэлектрической проницаемости материала, независимой от частоты, стенка настроена по электрической толщине только на одну из частот рабочего диапазона, которая является полуволновой. При увеличении широкополосности, пропорционально увеличению рабочей частотной полосы, растет по диапазону неравномерность электрической толщины стенки относительно «настроенной» на среднюю частоту, которая приводит к увеличению искажений, вносимых обтекателем, в поле падающей волны.

Кроме того, для увеличения широкополосности обтекателя предлагается увеличить тангенс угла диэлектрических потерь. Но применение в конструкции стенки обтекателя материала с увеличенным тангенсом угла диэлектрических потерь маскирует частотную неоднородность искажения поля падающей волны. Собственные характеристики антенной системы под обтекателем со стенкой из материала с более высоким тангенсом угла диэлектрических потерь будут иметь более расплывчатые и хуже настроенные, менее чувствительные пеленгационные характеристики, в частности более низкий уровень глубины нуля разностного канала пеленгатора.

Также недостатком прототипа является то, что при росте тангенса угла диэлектрических потерь возрастают прямые тепловые потери сигнала падающей волны в стенке обтекателя. Это приводит к уменьшению коэффициента прохождения и, как следствие, снижению дальности обнаружения цели.

Задачей изобретения является снижение искажений, вносимых обтекателем, в поле падающей волны в рабочем диапазоне частот.

Достигается задача тем, что предложен широкополосный обтекатель, содержащий стенку из диэлектрического материала в форме колпака, снабженный узлом крепления к летательному аппарату, отличающийся тем, что стенка выполнена из материала с частотно-зависимым распределением диэлектрической проницаемости

геометрическая толщина стенки выбирается из условия

при этом электрическая толщина стенки кратна половине длины волны в рабочем диапазоне частот, a α, αmin и αмaх - усредненный, минимальный и максимальный углы падения электромагнитной волны для выбранной формы обтекателя, FCP - средняя частота рабочего диапазона, с - скорость света, n = 1, 2… - натуральное число.

Выполнение обтекателя со стенкой из материала, для которого реализованы условия по предлагаемому техническому решению с частотно-зависимым распределением диэлектрической проницаемости, позволяет уменьшить влияние изменения электрической толщины стенки и за счет улучшения согласования стенки со свободным пространством снизить искажения, вносимые стенкой в фазу поля падающей волны.

Авторы установили, что в заявляемой конструкции широкополосного обтекателя для предложенного условия выбора геометрической толщины стенки электрическая толщина будет соответствовать кратной половине длины волны, а это необходимо для минимизации искажений вносимых обтекателем в поле падающей волны.

Определение величины электрической толщины стенки обтекателя кратной половине длины волны достигается применением рекуррентной процедуры уточнения выбора величины геометрической толщины с учетом формы обтекателя и частотно-зависимым распределением диэлектрической проницаемости материала, и наоборот.

Для доказательства преимущества предлагаемого технического решения проведены расчетные эксперименты, результаты которых представлены ниже.

На фиг.1 представлены расчетные зависимости коэффициента прохождения для ТЕ волны [Борн М., Вольф Э. Основы оптики. Изд. «Наука», М., 1973, 720 с.] в диапазоне частот от FH=10 до FВ=15 ГГц при падении плоской волны на плоский слой диэлектрика с углом α=63 град для различных распределений диэлектрической проницаемости материала стенки по диапазону. Толщина слоя h=6,75 мм была определена расчетом при условии, что стенка равна полуволновой электрической толщине на нижней частоте 10 ГГц для ε(FН)=5,8.

Зависимость 1 соответствует частотно-независимому, равномерному распределению диэлектрической проницаемости по диапазону частот ε(F)=5,8.

Зависимость 2 соответствует монотонному уменьшению диэлектрической проницаемости по диапазону частот от ε(FН)=5,8 до ε(FВ)=3,1.

Зависимость 3 соответствует монотонному уменьшению диэлектрической проницаемости по диапазону частот ε(FН)=5,8 до ε(FВ)=4,1.

Зависимость 4 соответствует монотонному уменьшению диэлектрической проницаемости по диапазону частот ε(FН)=5,8 до ε(FВ)=2,1.

Зависимость 5 соответствует монотонному уменьшению диэлектрической проницаемости по диапазону частот ε(FН)=5,8 до ε(FВ)=6,2.

Зависимость 6 соответствует монотонному увеличению диэлектрической проницаемости по диапазону частот ε(FН)=5,8 до ε(FВ)=6,8.

Из фиг.1 видно, что коэффициент прохождения для материала с уменьшением диэлектрической проницаемости по диапазону частот (зависимости 2, 3, 4) выше, чем для материала с частотно-независимым распределением диэлектрической проницаемости по диапазону частот (зависимость 1) и выше, чем для материала с увеличением диэлектрической проницаемости по диапазону частот (зависимость 5, 6). Видно, что наилучшая зависимость 2 коэффициента прохождения от частоты для стенки, выполненной из материала, имеющего зависимость диэлектрической проницаемостью от частоты по предлагаемому техническому решению.

Поэтому по предлагаемому техническому решению при конструировании широкополосных обтекателей необходимо применять конструкцию обтекателя, выполненного по предлагаемому техническому решению.

На фиг.2-7 представлены проведенные модельные электродинамические расчеты коэффициента прохождения обтекателя оживальной формы для стенки толщиной

h=6,7 мм в частотном диапазоне от FH=10 до FВ=15 ГГц (на трех частотах: FH=10, FCP=12,5, FB=15), с распределениями диэлектрической проницаемости по частоте в соответствии с фиг.1.

На фиг.2 представлены соответствующие трем частотам расчетные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя, со стенкой из материала с частотно-независимым распределением диэлектрической проницаемости по диапазону частот ε(F)=4,09.

На фиг.3 представлены соответствующие трем частотам расчетные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя со стенкой из материала с уменьшением диэлектрической проницаемости по диапазону частот: ε(FН)=4,59, ε(FCP)=4,09, ε(FB)=3,59.

На фиг.4 представлены соответствующие трем частотам расчетные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя со стенкой из материала с уменьшением диэлектрической проницаемости по диапазону частот: ε(FH)=5,8, ε(FCP)=4,09, ε(FB)=3,1.

На фиг.5 представлены соответствующие трем частотам расчетные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя со стенкой из материала с уменьшением диэлектрической проницаемости по диапазону частот от ε(FН)=6,09, ε(FCP)=4,09, ε(FВ)=2,09.

На фиг.6 представлены соответствующие трем частотам расчетные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя со стенкой из материала с увеличением диэлектрической проницаемости по диапазону частот ε(FН)=2,09, ε(FCP)=4,09, ε(FB)=6,09.

На фиг.7 представлены соответствующие трем частотам расчетные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя со стенкой из материала с увеличением диэлектрической проницаемости по диапазону частот от ε(FН)=3,09, ε(FCP)=4,09, ε(FВ)=5,09.

Из представленных фиг.2-7 видно, что минимальные и усредненные величины коэффициента прохождения обтекателя со стенкой из материалов с диэлектрической проницаемостью, спадающей по диапазону частот (фиг.3, 4, 5), выше, чем для материала с частотно-независимым распределением диэлектрической проницаемостью по диапазону частот (фиг.2), и выше, чем для материалов с увеличением диэлектрической проницаемости по диапазону частот (фиг.6, 7). Видно, см. фиг.4, что наилучшая зависимость коэффициента прохождения от частоты для обтекателя, выполненного по предлагаемому техническому решению, со стенкой из материала, имеющего предлагаемую в техническом решении зависимость диэлектрической проницаемостью от частоты.

Поэтому при конструировании широкополосных обтекателей необходимо применять конструкцию, выполненную по предлагаемому техническому решению.

Проведенные модельные электродинамические расчеты крутизны пеленгационной ошибки для Е поляризации обтекателя оживальной формы с толщиной стенки h=6,7 мм в частотном диапазоне от FH=10 до FВ=15 ГГц (на трех частотах FH=10, FCP=12,5, FВ=15 ГГц) с различными распределениями диэлектрической проницаемости по частоте представлены на фиг.8-13.

На фиг.8 представлены соответствующие трем частотам расчетные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой из материала с частотно-независимым, равномерным распределением диэлектрической проницаемости по диапазону частот ε(F)=4,09.

На фиг.9 представлены соответствующие трем частотам расчетные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой из материала с уменьшением диэлектрической проницаемости по диапазону частот от ε(FН)=4,59, ε(FCP)=4,09, ε(FB)=3,09

На фиг.10 представлены соответствующие трем частотам расчетные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой из материала с уменьшением диэлектрической проницаемости по диапазону частот от ε(FН)=5,8, ε(FCP)=4,09, ε(FB)=3,1.

На фиг.11 представлены соответствующие трем частотам расчетные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой из материала с уменьшением диэлектрической проницаемости по диапазону частот: ε(FН)=6,09, ε(FCP)=4,09, ε(FB)=2,09.

На фиг.12 представлены соответствующие трем частотам расчетные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой из материала с увеличением диэлектрической проницаемости по диапазону частот от ε(FН)=2,09, ε(FCP)=4,09, ε(FВ)=6,09.

На фиг.13 представлены соответствующие трем частотам расчетные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой из материала с увеличением диэлектрической проницаемости по диапазону частот ε(FН)=3,09, ε(FCP)=4,09, ε(FВ)=5,09.

Из сравнения фиг.10 и 8, 9, 11, 12, 13 видно, что для обтекателя, выполненного по предлагаемому техническому решению, изменения крутизны в рабочем диапазоне частот значительно ниже, чем для обтекателей, выполненных из материалов с другими распределениями диэлектрической проницаемости по частоте (Фиг.9, 11, 12, 13), или для обтекателя, выполненного из материала с частотно-независимым, равномерным распределением диэлектрической проницаемости по частоте (Фиг.8).

Улучшить радиотехнические характеристики обтекателя, выполненного по предлагаемому техническому решению, возможно с использованием метода профилирования стенки [Крылов В.П., Подольхов И.В., Ромашин В.Г., Шадрин А.П. Метод математического профилирования антенных обтекателей. Радиотехника №11, 2002 г., стр.20-24].

На фиг.14 представлены соответствующие трем частотам (нижней, средней и верхней: FH=10, FCP=12,5, FB=15 ГГц) частотного диапазона расчетные зависимости пеленгационной ошибки для Е поляризации от угла поворота обтекателя со стенкой, выполненной из материала с распределением по техническому решению диэлектрической проницаемости по диапазону частот ε(FН)=5,8, ε(FCP)=4,09, ε(FB)=3,1 и стенкой равной толщины.

На фиг.15, 16 приведены соответствующие трем частотам (нижней, средней и верхней: FH=10, FCP=12,5, FB=15 ГГц) рабочего диапазона расчетные зависимости пеленгационной ошибки и ее крутизны для Е поляризации от угла поворота обтекателя, выполненного по техническому решению, с профилированной стенкой, выполненной из материала с предлагаемым распределением диэлектрической проницаемости по диапазону частот ε(F) от ε(FН)=5,8, ε(FCP)=4,09, ε(FB)=3,1 для 10, 12,5, 15 ГГц частот соответственно.

Из фиг.15 видно, что обтекатель, выполненный по предлагаемому техническому решению, с профилированной стенкой, выполненной из материала с предлагаемым распределением диэлектрической проницаемости диапазону частот ε(F), имеет максимальную пеленгационную ошибку в рабочем диапазоне частот не более 4 мин.

Из фиг.16 видно, что обтекатель, выполненный по предлагаемому техническому решению, с профилированной стенкой имеет максимальную крутизну пеленгационной ошибки не более 0,007 град/град.

Полученные характеристики лучше, чем для непрофилированного обтекателя, выполненного по предлагаемому техническому решению, но с равнотолщинной стенкой (смотри для сравнения фиг.10), для которого изменение крутизны пеленгационной ошибки составило от -0,01 до +0,043 град./град.

Для улучшения прочностных, теплофизических и радиотехнических характеристик обтекатель по данному техническому решению можно выполнить с многослойной стенкой.

На фиг.17, 18 и 19 представлены соответствующие трем частотам (нижней, средней и верхней: FH=10, FCP=12,5, FB=15 ГГц) диапазона расчетные радиотехнические характеристики для Е поляризации от угла поворота обтекателя, выполненного по техническому решению, с двухслойной стенкой: первый слой с постоянной диэлектрической проницаемостью ε1=3,6 и толщиной h1=2,0 мм, второй слой толщиной h2=4,7 м, выполнен из материала с распределением диэлектрической проницаемости ε(F) от ε(FН)=5,8, ε(FCP)=4,09, ε(FВ)=3,1 для 10, 12,5, 15 ГГц частот соответственно.

На фиг.17 представлены расчетные частотные зависимости крутизны пеленгационной ошибки для Е поляризации от угла поворота обтекателя, выполненного по техническому решению, с двухслойной стенкой.

На фиг.18 представлены расчетные частотные зависимости пеленгационной ошибки для Е поляризации от угла поворота обтекателя, выполненного по техническому решению, с двухслойной стенкой.

На фиг.19 представлены расчетные частотные зависимости коэффициента прохождения для Е поляризации от угла поворота обтекателя, выполненного по техническому решению, с двухслойной стенкой.

Из фиг.17, 18, 19 видно, что обтекатель с многослойной стенкой и материалом с частотной зависимостью диэлектрической проницаемости имеет радиотехнические характеристики значительно лучше, чем обтекатель с монолитной стенкой выполненной из материала, без изменения диэлектрической проницаемости по частоте.

Улучшить радиотехнические характеристики обтекателя, выполненного по предлагаемому техническому решению, с многослойной стенкой возможно с использованием метода профилирования стенки первого или второго слоя.

На фиг.20, 21 представлены соответствующие трем частотам (нижней, средней и верхней: FH=10, FCP=12,5, FВ=15 ГГц) диапазона расчетные радиотехнические характеристики для Е поляризации от угла поворота профилированного по первому слою обтекателя, выполненного по техническому решению, с двухслойной стенкой: первый слой с постоянной диэлектрической проницаемостью ε1=3,6 и толщиной h1=2,0 мм, второй слой толщиной h2=4,7 м выполнен из материала с распределением диэлектрической проницаемости ε(F) от ε(FН)=8,6, ε(FCP)=4,4, ε(FB)=2,7 для 10, 12,5, 15 ГГц частот соответственно.

Из фиг.20 видно, что профилированный по первому слою многослойный обтекатель, выполненный по предлагаемому техническому решению, имеет максимальную крутизну пеленгационной ошибки не более 0,013 град/град.

Из фиг.21 видно, что профилированный по первому слою многослойный обтекатель, выполненный по предлагаемому техническому решению, имеет максимальную пеленгационную ошибку в рабочем диапазоне частот не более 5,5 мин.

На фиг.22, 23 представлены соответствующие трем частотам (нижней, средней и верхней: FH=10, FCP=12,5, FВ=15 ГГц) диапазона расчетные радиотехнические характеристики для Е поляризации от угла поворота профилированного по второму слою обтекателя, выполненного по техническому решению, с двухслойной стенкой: первый слой с постоянной диэлектрической проницаемостью ε1=3,6 и толщиной h1=2,0 мм, второй слой толщиной h2=4,7 м выполнен из материала с распределением диэлектрической проницаемости ε(F) от ε(FH)=8,6, ε(FCP)=4,4, ε(FB)=2,7 для 10, 12,5, 15 ГГц частот соответственно.

Из фиг.22 видно, что профилированный по второму слою многослойный обтекатель, выполненный по предлагаемому техническому решению, имеет максимальную крутизну пеленгационной ошибки не более 0,007 град/град.

Из фиг.23 видно, что профилированный по второму слою многослойный обтекатель, выполненный по предлагаемому техническому решению, имеет максимальную пеленгационную ошибку в рабочем диапазоне частот не более 2,5 мин.

Из сравнения фиг.20-23 с фиг.2, 8 видно, что обтекатель с многослойной профилированной стенкой, выполненной из материала с частотной зависимостью диэлектрической проницаемости, имеет радиотехнические характеристики значительно лучше, чем обтекатель с монолитной стенкой из материала с частотно-независимой диэлектрической проницаемостью.

Широкополосный обтекатель, выполненный по предлагаемому техническому решению, по сравнению с известными конструкциями обтекателей, в широкой полосе частот вносит минимальные искажения в поле падающей волны и обладает лучшими радиотехническими характеристиками.

Источники информации

1. Каплун В.А. Обтекатели антенн СВЧ. М.: Советское радио, 1974 г., 238 с.

2. Патент RU №2168814. Н01Q 1/42. Антенный обтекатель головки самонаведения. 27.04.2000.

3. Патент US №3314070. Tapered radome. (Конический обтекатель) Приор. 11 апреля 1967 г.

4. Патент US №6028565. W-band and X-band radome wall. Приор. 19 ноября 1996 г.

5. Патент RU №2054763. H01Q 1/42. Антенный обтекатель. 12.04.1993.

6. Борн М., Вольф Э. Основы оптики. Изд. «Наука», М., 1973, 720 с.

7. Крылов В.П., Подольхов И.В., Ромашин В.Г., Шадрин А.П. Метод математического профилирования антенных обтекателей. Радиотехника №11, 2002 г. стр.20-24.

Широкополосный обтекатель, содержащий стенку из диэлектрического материала в форме колпака, снабженного узлом крепления к летательному аппарату, отличающийся тем, что стенка выполнена из материала с частотно-зависимым распределением диэлектрической проницаемости геометрическая толщина стенки выбирается из условия при этом электрическая толщина стенки кратна половине длины волны в рабочем диапазоне частот, а α, α и α - усредненный, минимальный и максимальный углы падения электромагнитной волны для выбранной формы обтекателя, F - средняя частота рабочего диапазона, с - скорость света, n = 1, 2… - натуральное число.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 49.
10.04.2019
№219.017.0358

Термостойкое желтое светотехническое стекло

Изобретение относится к составам термостойких желтых стекол для изделий аэродромной техники. Технический результат изобретения заключается в стабилизации светотехнических параметров, а именно, коэффициента светопропускания и координат цветности в интервале температур 20-1750°С стекла, понижении...
Тип: Изобретение
Номер охранного документа: 0002387604
Дата охранного документа: 27.04.2010
10.04.2019
№219.017.03b0

Формовой комплект для формования сложнопрофильных керамических заготовок

Изобретение относится к технологии формования крупногабаритных, сложнопрофильных керамических изделий из водных шликеров. Формовой комплект содержит водопоглощающую матрицу, сердечник, узлы для их взаимной соосной установки и подпитки. Формовой комплект дополнительно снабжен устройством...
Тип: Изобретение
Номер охранного документа: 0002388596
Дата охранного документа: 10.05.2010
10.04.2019
№219.017.082f

Способ механической обработки сферических поверхностей

Изобретение относится к технологии механической обработки резанием, а именно к области абразивной обработки сферических поверхностей деталей. Осуществляют вращение обрабатываемой детали и режущего инструмента. Перед механической обработкой обрабатываемую деталь закрепляют в заданное положение...
Тип: Изобретение
Номер охранного документа: 0002405666
Дата охранного документа: 10.12.2010
10.04.2019
№219.017.08c2

Способ переформования листового стекла

Изобретение относится к области изготовления гнутого стекла, которое может использоваться в качестве защитных стекол для бортовых аэронавигационных огней. Технический результат изобретения заключается в получении заготовок с двойной или более сложной кривизной поверхности с одновременным...
Тип: Изобретение
Номер охранного документа: 0002431613
Дата охранного документа: 20.10.2011
19.04.2019
№219.017.2e86

Устройство для механической обработки крупногабаритных сложнопрофильных керамических изделий

Изобретение относится к керамической и авиационной отраслям промышленности и преимущественно может быть использовано при механической обработке крупногабаритных, сложнопрофильных керамических изделий типа носовых диэлектрических конусов летательных аппаратов. Технический результат изобретения...
Тип: Изобретение
Номер охранного документа: 0002312764
Дата охранного документа: 20.12.2007
19.04.2019
№219.017.2f06

Способ получения керамических изделий на основе волластонита

Изобретение относится к керамической промышленности, а именно к изготовлению футеровки агрегатов и литейной оснастки для металлургии алюминиевых сплавов. Техническим результатом изобретения является утилизация производственных отходов материалов на основе волластонита, повышение термостойкости...
Тип: Изобретение
Номер охранного документа: 0002385849
Дата охранного документа: 10.04.2010
19.04.2019
№219.017.2f85

Размеростабильная оболочка

Изобретение относится к конструкциям размеростабильных оболочек подкрепленного типа и может применяться в высокоточных космических и наземных системах, например, в качестве несущих корпусов телескопов и оптических приборов. Размеростабильная оболочка содержит металлическую обшивку...
Тип: Изобретение
Номер охранного документа: 0002373118
Дата охранного документа: 20.11.2009
19.04.2019
№219.017.3006

Состав связующего для пропитки волокнистого наполнителя, препрег на его основе, способ получения препрега, способ изготовления теплостойких изделий из композиционного материала на основе препрега и способ изготовления теплостойких изделий из композиционного материала на основе волокнистого наполнителя

Изобретение относится созданию теплостойких конструкций из композиционных материалов (КМ), работающих в экстремальных условиях: длительное воздействие высоких температур (150-200°С) в сочетании с механическими нагрузками и, возможно, высокими дозами ионизирующей радиации. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002304591
Дата охранного документа: 20.08.2007
29.04.2019
№219.017.41e6

Устройство для формования керамических изделий из водных шликеров

Изобретение относится к области производства строительных материалов. Устройство для формования керамических изделий из водных шликеров включает водопоглощающую матрицу, пассивный сердечник, состоящий из опорного фланца с центрирующим штоком и формообразующего конуса с легкодеформируемым...
Тип: Изобретение
Номер охранного документа: 0002358861
Дата охранного документа: 20.06.2009
29.04.2019
№219.017.42a0

Высокоглиноземистая вяжущая суспензия для получения керамического материала

Изобретение относится к области производства огнеупорных и керамических материалов, используемых для непрерывной разливки сталей, а также в печных огнеупорах. Высокоглиноземистая вяжущая суспензия включает следующие компоненты, мас.%: электроплавленый корунд 56,95-78,49, плавленый кварц 20-40,...
Тип: Изобретение
Номер охранного документа: 0002301211
Дата охранного документа: 20.06.2007
Показаны записи 21-30 из 38.
18.05.2018
№218.016.515f

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала, включающий определение толщины стенки, настроенной на рабочий частотный диапазон обтекателя, его изготовление и измерение радиотехнических характеристик на стенде, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002653185
Дата охранного документа: 07.05.2018
01.09.2018
№218.016.81ac

Способ измерения диэлектрических свойств материала и устройство для его осуществления

Изобретение относится к измерению диэлектрической проницаемости и тангенса угла диэлектрических потерь материалов. В свободном пространстве образец материала располагают под углом Брюстера, в диапазоне частот измеряют мощность и фазу прошедшей волны и по изменению фазы прошедшей волны в полосе...
Тип: Изобретение
Номер охранного документа: 0002665593
Дата охранного документа: 31.08.2018
29.12.2018
№218.016.aca0

Проволочный нагреватель для цилиндрической печи

Изобретение относится к области электротермии, в частности к конструкциям нагревателей для нагрева цилиндрических печей. Техническим результатом является повышение равномерности теплового потока и снижение тепловых потерь для достижения высоких температур нагрева при оптимальной токовой...
Тип: Изобретение
Номер охранного документа: 0002676293
Дата охранного документа: 27.12.2018
01.03.2019
№219.016.ce98

Устройство для определения диэлектрической проницаемости образца материала при воздействии внешних факторов

Изобретение относится к измерениям диэлектрической проницаемости материалов при воздействии внешних факторов, преимущественно к устройствам измерения диэлектрической проницаемости при нагреве. Устройство, содержащее излучающий генератор, передающую линейно поляризованную антенну, камеру для...
Тип: Изобретение
Номер охранного документа: 0002453856
Дата охранного документа: 20.06.2012
01.03.2019
№219.016.cefb

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель» для работы в совмещенных диапазонах. Техническим результатом является снижение пеленгационных ошибок в системе «антенна-обтекатель», работающей в совмещенных диапазонах....
Тип: Изобретение
Номер охранного документа: 0002459324
Дата охранного документа: 20.08.2012
09.05.2019
№219.017.4ca2

Ракетный двигатель твердого топлива

Ракетный двигатель твердого топлива содержит сопловой блок, воспламенитель и прочно скрепленный с корпусом заряд твердого топлива с центральным каналом звездообразного сечения и нависающим незабронированным задним торцом. Канал заряда имеет со стороны заднего торца местное коническое...
Тип: Изобретение
Номер охранного документа: 0002317433
Дата охранного документа: 20.02.2008
20.05.2019
№219.017.5cf1

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным системам «антенна-обтекатель». Широкополосная система «антенна-обтекатель» содержит пеленгующую антенну и обтекатель со стенкой из диэлектрического материала, снабженный узлом крепления к летательному...
Тип: Изобретение
Номер охранного документа: 0002688034
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e83

Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления

Изобретение относится к измерительной технике сверхвысоких частот и предназначено для измерения удельного сопротивления материалов. Сущность: в измеряемом частотном диапазоне волноводный резонатор с подвижным торцевым поршнем последовательно настраивают в резонанс на ряде фиксированных частот....
Тип: Изобретение
Номер охранного документа: 0002688579
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5f3f

Способ определения сверхвысокочастотных параметров материала в полосе частот и устройство для его осуществления

Использование: для определения сверхвысокочастотных параметров материала. Сущность изобретения заключается в том, что способ включает измерение мощности и фазы прошедшей волны между передающей и приемной антеннами без образца материала, установку образца материала на вращающую подставку в...
Тип: Изобретение
Номер охранного документа: 0002688588
Дата охранного документа: 21.05.2019
19.06.2019
№219.017.8452

Ракета

Изобретение относится к области вооружения. Ракета, выполненная по нормальной аэродинамической схеме, содержит корпус, размещенные в нем головку самонаведения, аппаратуру системы управления, неконтактный взрыватель, боевую часть, четыре рулевых привода, систему энергопитания и двигательную...
Тип: Изобретение
Номер охранного документа: 0002276321
Дата охранного документа: 10.05.2006
+ добавить свой РИД