×
01.03.2019
219.016.cbea

Результат интеллектуальной деятельности: КАТАЛИЗАТОР И СПОСОБ ГОМОГЕННОЙ ОКИСЛИТЕЛЬНОЙ ДЕМЕРКАПТАНИЗАЦИИ НЕФТИ И НЕФТЕПРОДУКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к органической химии, в частности к окислительной демеркаптанизации нефти и нефтепродуктов. Описан катализатор для окислительной демеркаптанизации нефти и нефтепродуктов, являющийся производным фталоцианина, отличающийся тем, что он представляет собой надмолекулярный ионный ассоциат противоположно заряженных фталоцианинов структурной формулы I и II Также описан способ окислительной каталитической демеркаптанизации нефти и нефтепродуктов при комнатной температуре кислородом воздуха в щелочной среде в присутствии вышеописанного катализатора. Технический результат - обеспечение проведения процесса в технологически мягких условиях с достижением конверсии субстрата до 98%. 2 н. и 1 з.п., 2 табл.

Изобретение относится к органической химии, в частности к окислительной демеркаптанизации нефти и нефтепродуктов, а более конкретно касается катализатора этого процесса и способа демеркаптанизации с использованием данного катализатора; и может быть использовано для очистки нефти и нефтепродуктов.

Используемый в промышленном процессе очистки нефти и нефтепродуктов от серусодержащих соединений гомогенный катализатор (динатриевая соль дисульфофталоцианина кобальта) в виде 0,5% раствора ведет окисление меркаптанов и сероводорода в водном растворе щелочи (2-20% NaOH) [Справочник современных процессов переработки газов. // Нефть, газ и нефтехимия за рубежом. 1986. №7. с.102]. Конверсия н-бутилмеркаптана в присутствии этого катализатора (14,2·10-6 М) при 30°С, в 10% щелочном растворе и при пропускании чистого кислорода составила 88,9% за 14 минут [ЖПХ. 1983. №9. с.2096]. Основным недостатком этого катализатора является использование достаточно больших концентраций катализатора для достижения высоких конверсии меркаптана.

Эту проблему решили, используя в качестве гомогенного катализатора гексабром-3,6,3,6,3,6,3,6-октаоксифталоцианин кобальта, который в присутствии 10% водного раствора щелочи (NaOH), при пропускании чистого кислорода и 30°С за 60 минут позволяет достигнуть 89% конверсии модельного н-пропилмеркаптана [ЖПХ. 1983. №9. с.2096] (прототип) [1]. При этом концентрация катализатора составляла 0,835·10-6 М.

Недостатками этого катализатора являются использование чистого кислорода при окислении н-пропилмеркаптана и проведение реакции при повышенной температуре.

Задача настоящего изобретения состоит в изыскании активных катализаторов гомогенного окисления серусодержащих соединений нефти и нефтеродуктов, обеспечивающих проведение процесса в более технологичных условиях: низкая температура и исключение использования пожаро-взрывоопасного окислителя кислорода.

Задача решается тем, что разработан катализатор, являющийся производным фталоцианина, отличающийся тем, что он представляет собой надмолекулярный ионный ассоциат разноименно заряженных фталоцианинов структурной формулы I и II.

I:(R+)nPcM, где II:(R-)nPcM, где
R=-CH2N+(CH3)2CH2CH2OHCl- R=R1=R2=-C(O)O-Na+ (carb8-
(choln-PcM), n=2÷8, M=Co, Fe; РсМ), n=8, M=Co, Fe;
R=Rl=-C(O)O-Na+, R2=H (carb4-
n=2÷8, M=Co, Fe; PcM), n=4, M=Co;
(R-)nPcM, где R=Rl=-S(O)2O-Na+, R2=H (sul4-
R=-CH2P(=O)(O-Na+)2(phosn-PcM), PcM), n=4, M=Co
n=8, M=Co

Поставленная задача также решается тем, что мольное соотношение компонентов в ассоциате 1:1-2.

Известен способ демеркаптанизации[1] с использованием катализатора, представляющего собой гексабром-3,6,3,6,3,6,3,6-октаоксифталоцианин кобальта, как описано выше. Он отличается высокой конверсией модельного н-пропилмеркаптана, но имеет технологические недостатки: применение чистого кислорода и повышенная температура проведения процесса.

Задача настоящего изобретения состоит в разработке способа каталитической демеркаптанизации нефти и нефтепродуктов, который бы обеспечивал высокую конверсию и был достаточно технологичен.

Поставленная задача решается тем, что процесс окисления модельного н-пропилмеркаптана проводят в щелочной среде с использованием кислорода воздуха с указанным выше катализатором при комнатной температуре.

Около 20 лет назад на примере порфиринов, а затем - смесей порфиринов и фталоцианинов было установлено, что при смешивании растворов комплексов с четырьмя противоположными по знаку заряда заместителями (R+ или R-) образуются прочные ассоциаты (в литературе используется и другие названия - супрамолекулярные агрегаты, комплексы, ионные пары с переносом заряда и проч.) строго определенного состава - димеры и триммеры [Т.Shimidzu and Т.lyoda, Chem. Phys. Lett. 1981. p.853.; H.Segawa, H.Nishino, Т.Kamikawa, К.Honda and Т.Shimidzu, Chem. Lett. 1989. p.1917; S.Gaspard, C.R., Acad. Sci. Paris. 1984. 298. p.379]. Использование нами термина «ассоциаты» обусловлено следующими причинами. Тетрапиррольные макроциклы в растворах склонны к взаимодействию друг с другом посредством нековалентного связывания. В результате образуются агрегаты, состоящие из нескольких одинаковых молекул. Для того чтобы отличать такие агрегаты от изучаемых нами мы используем термин «ассоциаты», так как наши образования состоят из разных молекул. Использовать термин «комплексы» также неудобно, так как исходные молекулы являются фталоцианиновыми комплексами. Таким образом, выражение «надмолекулярный ионный ассоциат» обозначает систему, состоящую из нескольких молекул (надмолекулярный), различных по своим свойствам, связанных между собой преимущественно ионными связями, но не только.

Фталоцианины с катионными аммониометильными заместителями choln-PcM и pymn-PcM получали хлорметилированием фталоцианина кобальта или фталоцианина железа α,α'-дихлорметиловым эфиром и последующим взаимодействием хлорметилзамещенного производного с 2-(диметиламино)этанолом или пиридином, соответственно. Среднюю степень замещения регулировали, изменяя время реакции хлорметилирования.

Аналогично получали и анионный фосфонатометилзамещенный фталоцианин кобальта phosn-PcCo, однако при взаимодействии с хлорметилзамещенным производным использовали триметилфосфит или триэтилфосфит с последующим гидролизом диалкилфосфонатных групп.

Натриевую соль тетракарбоксифталоцианина кобальта carb4-PcCo получали нейтрализацией известного 2,9,16,23-тетракарбоксифталоцианина кобальта [С.А.Михаленко, Л.И.Соловьева, Е.А.Лукьянец // ЖОХ. 2004. Т.74. Вып.3. С.496-505].

Натриевую соль октакарбоксифталоцианина кобальта carb8-PcCo получали по способу, описанному в работе [Патент РФ 2304582, 2007, БИ №23].

Натриевую соль тетрасульфофталоцианина кобальта sul4-PcCo получают как в работе [Rollman L.D. Ivamoto R.T. J. Amer. Chem. Soc. 1968. V.90. №5. P.1455].

Ассоциаты получали путем смешивания водных растворов фталоцианинов с разноименно заряженными заместителями. Состав ассоциатов регулировали, изменяя стехиометрическое соотношение компонентов (R-)nPcM:(R+)nPcM. Состав катализаторов в соответствии с изобретением приведен в таблице 1.

Для оценки каталитической активности заявленных катализаторов использовали такую же, как в прототипе реакцию каталитического окисления модельного н-пропилмеркаптана. Каталитическая активность катализаторов (оцененная по конверсии исходного н-пропилмеркаптана) приведена в таблице 2.

Как видно из таблицы 2, все катализаторы проявили большую или такую же каталитическую активность, как у прототипа при более мягких условиях: при окислении кислородом воздуха при комнатной температуре.

При повторном использовании лучших катализаторов их активность незначительно снижается, оставаясь весьма высокой - 95%.

Таким образом, получен активный катализатор, являющийся производным фталоцианина, отличающийся тем, что он представляет собой надмолекулярный ионный ассоциат разноименно заряженных фталоцианинов структурной формулы I и II, который позволяет / эффективно проводить процесс окисления меркаптанов при комнатной температуре в атмосфере воздуха.

Нижеприведенные примеры иллюстрируют предлагаемое изобретение.

Пример 1. Получение октакис(N-(2-гидроксиэтил)-N,N-диметиламмо-ниометил)фталоцианина кобальта (chol8-PcCo).

К 11 г (0,082 моль) хлористого алюминия добавляют при перемешивании 3 мл триэтиламина. После охлаждения массы до температуры 70-80°С к смеси приливают 6 мл (0,0075 моль) α,α'-дихлорметилового эфира, а затем загружают 3 г (0,0052 моль) фталоцианина кобальта. Смесь нагревают в течение 3 часов при перемешивании и температуре 90-93°С, после чего выгружают на лед. Осадок отфильтровывают, промывают водой, метанолом и сушат. Выход октакис(хлорметил)фталоцианина кобальта 5,65 г (78,6%)). Электронный спектр поглощения, λmax = 673 нм (ДМФА). Найдено, %: Cl 29,11. Вычислено % Cl 29,56.

К 0,7 г (0,00073 моль) окстакис(хлорметил)фталоцианина кобальта добавляют 5 мл диметилформамида и 1,5 мл. 2-(диметиламино)этанола, после чего смесь нагревают при перемешивании на кипящей водяной бане в течение 2-х часов. Осадок отфильтровывают, промывают ацетоном, переосаждают из метанола с ацетоном и сушат. Выход 1,0 г (83,3%) комплекса (I). Электронный спектр поглощения, λmax = 672 нм (Н2О). Найдено, %: Cl 16,51; N 13,02. Вычислено для C80H134N18O10C18Co, %: Cl 16,95; N13,4.

Пример 2. Получение октакис(пиридиниометил)фталоцианина кобальта октахлорид (pym8-PcCo).

К 0,49 г (0,00051 моль) окстакис(хлорметил)фталоцианина кобальта (примеры 1-2) добавляют 5,0 мл пиридина после чего смесь нагревают при перемешивании на кипящей водяной бане в течение 2-х часов. Осадок отфильтровывают, промывают ацетоном, переосаждают из метанола с ацетоном и сушат. Выход 0,43 г (83,3%) комплекса (II). Электронный спектр поглощения λmax = 672 нм (Н2О). Найдено, %: Cl 16,51; N 13,02. Вычислено для C90H74N18C18Co, %: Cl 16,95; N 13,4.

Пример 3. Получение октакис(фосфонометил)фталоцианина кобальта (phos8-PcCo).

К 2,0 г (0,00208 моль) окстакис(хлорметид)фталоцианина кобальта, полученного как в примере 1, добавляют 5 мл триэтилфосфита и смесь нагревают при 150°С в течение 2 ч. Избыток триэтилфосфита удаляют в вакууме, продукт переосаждают из бензола гексаном. Выход октакис[(диэтоксифосфонил)метил]фталоцианина кобальта 3,0 г (81,3%) комплекса (I). Электронный спектр поглощения λmax = 685 нм (Н2О). Найдено, %: Р 13,31; Со 3,51. Вычислено для C72H104CoN8O24P8, %: P 13.98; Со 3.33.

Смесь 0,50 г (0,000282 моль) выше полученного эфира и 1 мл концентрированной бромистоводородной кислоты нагревают при 110°С в течение 2 ч. Избыток бромистоводородной кислоты отгоняют в вакууме, остаток промывают водой, спиртом и сушат. Выход продукта 0,27 г (72,3%). Электронный спектр поглощения

λmax = 684 нм (водный раствор NaOH, рН 10). Найдено, %: Р 18,1; Со 4,2. Вычислено для

C40H40CoN8O24P8, %: P 18,72; Со 4,45.

Пример 4. Получение катализатора - ассоциата chol8-PcCo:carb8-PcCo = 1:1.

К 1 мл 3,30·10-4 М водного раствора carb8-PcCo прибавляют 1 мл 3,30·10-4 М водного раствора chol8-PcCo, перемешивают 15 мин. Концентрация раствора полученного ассоциата составляет 1,65·10-4 М.

Пример 5. Получение катализатора - ассоциата chol8-PcCo:carb8-PcCo = 1:2.

К 1 мл 6,60·10-4 М водного раствора carb8-PcCo прибавляют 1 мл 3,30·10-4 М водного раствора chol8-PcCo и перемешивают 15 мин, Концентрация раствора полученного ассоциата составляет 1,65·10-4 М.

Пример 6. Получение катализатора, включающего ассоциат chol8-PcCo:carb8-PcCo = 2:1.

К 1 мл 3,30·10-4 М водного раствора carb8-PcCo прибавляют 1 мл 6,60·10-4 М водного раствора chol8-PcCo и перемешивают 15 мин. Концентрация раствора полученного ассоциата составляет 1,65·10-4 М.

Примеры 7-14.

Остальные катализаторы согласно таблице 1 получали аналогичным образам.

Таблица 1
№ примера Состав катализатора
(R+)nPcM (R-)nPcM (R+)nPcM:(R-)nPcM
4 chol8-PcCo carb8-PcCo 1:1
5 1:2
6 2:1
7 chol4-PcCo carb4-PcCo 2:1
8 pym8-PcCo carb8-PcCo 1:1
9 1:2
10 2:1
11 pym8-PcCo carb4-PcCo 2:1
12 1:1
13 pym8-PcCo phos8-PcCo 1:1
14 pym4-PcCo sul4-PcCo 1:1

Пример 15. Каталитическое окисление н-пропилмеркаптана.

Смешивали в реакторе 20 мл 10% вес. гидроксида натрия (NaOH) и 0,56 мл н-пропилмеркаптана, добавляли 0,1 мл водного раствора (1,65·10-4) chol8-PcCo:car8-PcCo = 1:1 (пример 4). Конечная концентрация ассоциата в растворе 0,80·10-6 М. Реакцию проводили при комнатной температуре в атмосфере воздуха при интенсивном перемешивании в течение 60 минут. Анализы на остаточный меркаптан после опыта проводили методом потенциометрического титрования на универсальном иономере И-500 по стандартной методике раствором азотнокислого аммиаката серебра. Измерительный электрод - сульфид-серебряный, электрод сравнения - хлор-серебряный.

По результатам анализа конверсия н-пропилмеркаптана составила 98%.

Пример 16. Вторичное использование катализатора.

К каталитической смеси (пример 15) после того, как была отобрана проба (0,2 мл) для анализа остаточного меркаптана, прибавляли 0,56 мл н-пропилмеркаптана. Реакцию проводили при комнатной температуре в атмосфере воздуха при интенсивном перемешивании в течение 60 минут. Анализы на остаточный меркаптан после опыта проводили методом потенциометрического титрования на универсальном иономере И-500 по стандартной методике раствором азотнокислого аммиаката серебра. Измерительный электрод - сульфид-серебряный, электрод сравнения - хлор-серебряный.

По результатам анализа конверсия н-пропилмеркаптана составила 95%.

Пример 17-26.

Процесс проводили по примеру 15, но с использованием катализаторов по примерам 5÷14. Результаты приведены в таблице 2.

Таким образом, как видно из таблицы 2, предложенный катализатор и способ демеркаптанизации с его использованием обеспечивает увеличение конверсии модельного н-пропилмеркаптана до 98% при одновременной технологичности процесса (комнатная температура, окислитель - кислород воздуха).

Таблица 2
№ примера Состав катализатора Конверсия н-пропилмеркаптана, %
(R+)nPcM (R-)nPcM (R+)nPcM:(R-)nPcM
15 chol8PcCo car8PcCo 1:1 1 цикл - 98
16 2 цикл - 95
17 1:2 97
18 2:1 95
19 chol8PcCo car4PcCo 2:1 89,5
20 pym8PcCo car8PcCo 1:1 94
2f 1:2 91
22 2:1 90
23 pym8PcCo car4PcCo 2:1 89
24 1:1 89
25 pym8PcCo phos8PcCo 1:1 93
26 pym4PcCo sul4PcCo 1:1 90

Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
20.04.2013
№216.012.36c4

Азосоединения на основе 4-амино-2,3',4'-трицианодифенила

Изобретение относится к области химии, конкретно к азосоединениям на основе 4-амино-2,3',4'-трицианодифенила общей формулы I, которые могут найти применение в синтезе фталоцианинов и их комплексов. В формуле I R означает 8 пр.
Тип: Изобретение
Номер охранного документа: 0002479573
Дата охранного документа: 20.04.2013
01.03.2019
№219.016.cbe4

Катализатор и способ окислительной демеркаптанизации нефти и нефтепродуктов

Изобретение относится к органической химии, в частности к окислительной демеркаптанизации нефти и нефтепродуктов. Описан катализатор для окислительной демеркаптанизации нефти и нефтепродуктов, представляющий собой фталоцианин, нанесенный на активированный уголь, отличающийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002381065
Дата охранного документа: 10.02.2010
11.03.2019
№219.016.d98a

Способ подавления роста опухолей

Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении злокачественных опухолей. Способ заключается во внутривенном введении металлокомплекса - катализатора окисления субстрата, затем аскорбиновой кислоты - субстрат окисления. Затем нагревают опухолевую...
Тип: Изобретение
Номер охранного документа: 0002376999
Дата охранного документа: 27.12.2009
04.04.2019
№219.016.fbb4

Способ получения фталоцианина цинка

Изобретение относится к органической химии, а именно к улучшенному способу получения фталоцианина цинка высокой степени чистоты, который может быть использован в качестве фотосенсибилизатора для фотодинамической терапии. Способ осуществляют взаимодействием фталонитрила с солью цинка при...
Тип: Изобретение
Номер охранного документа: 0002281952
Дата охранного документа: 20.08.2006
29.04.2019
№219.017.426e

Способ подавления роста опухолей

Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении злокачественных опухолей. Сущность заявляемого способа заключается в том, что внутривенно вводят наночастицы фталоцианинов в дозе не ниже 5 мг/кг веса и не выше максимально переносимой дозы с...
Тип: Изобретение
Номер охранного документа: 0002339414
Дата охранного документа: 27.11.2008
09.06.2019
№219.017.7ed6

Способ формирования группы риска неопластических нарушений в эпителии шейки матки

Способ формирования группы риска неопластических нарушений в эпителии шейки матки относится к медицине, в частности к способам физического анализа биологических материалов in vitro. Изобретение может быть использовано для цитологической диагностики дисплазии цервикального эпителия и рака шейки...
Тип: Изобретение
Номер охранного документа: 0002437096
Дата охранного документа: 20.12.2011
29.06.2019
№219.017.9e3e

Состав для получения сигнального или маскирующего аэрозольного образования

Изобретение относится к средствам для формирования аэродисперсных образований, а именно к составам для получения сигнальных или маскирующих аэрозольных образований, которые также могут быть использованы для постановки цветных аэрозольных образований в ходе демонстрационных полетов самолетов....
Тип: Изобретение
Номер охранного документа: 0002305676
Дата охранного документа: 10.09.2007
Показаны записи 41-50 из 65.
23.02.2019
№219.016.c72c

Клеточная линия меланомы человека mel ibr, используемая для получения противоопухолевых вакцин

Изобретение относится к области биотехнологии и может найти применение в медицине для вакцинотерапии злокачественных новообразований. Полученная новая клеточная линия меланомы человека mel Ibr обладает стабильными культуральными и морфологическими характеристиками, хранится в Специализированной...
Тип: Изобретение
Номер охранного документа: 0002287576
Дата охранного документа: 20.11.2006
23.02.2019
№219.016.c72d

Клеточная линия меланомы человека mel il, используемая для получения противоопухолевых вакцин

Изобретение относится к области биотехнологии, в частности к получению новых клеточных линий, и может быть использовано для создания противоопухолевых вакцин. Получена новая клеточная линия меланомы человека mel IL, которая обладает стабильными культуральными и морфологическими характеристиками...
Тип: Изобретение
Номер охранного документа: 0002287577
Дата охранного документа: 20.11.2006
23.02.2019
№219.016.c72f

Клеточная линия меланомы человека mel p, используемая для получения противоопухолевых вакцин

Изобретение относится к области биотехнологии и может найти применение в медицине для вакцинотерапии злокачественных новообразований. Полученная новая клеточная линия меланомы человека mel P обладает стабильными культуральными и морфологическими характеристиками, хранится в Специализированной...
Тип: Изобретение
Номер охранного документа: 0002287575
Дата охранного документа: 20.11.2006
23.02.2019
№219.016.c730

Клеточная линия меланомы человека mel kor, используемая для получения противоопухолевых вакцин

Изобретение относится к области биотехнологии и может быть использовано в медицине для вакцинотерапии злокачественных новообразований. Полученная новая клеточная линия меланомы человека mel Kor обладает стабильными культуральными и морфологическими характеристиками, хранится в...
Тип: Изобретение
Номер охранного документа: 0002287578
Дата охранного документа: 20.11.2006
01.03.2019
№219.016.cbe4

Катализатор и способ окислительной демеркаптанизации нефти и нефтепродуктов

Изобретение относится к органической химии, в частности к окислительной демеркаптанизации нефти и нефтепродуктов. Описан катализатор для окислительной демеркаптанизации нефти и нефтепродуктов, представляющий собой фталоцианин, нанесенный на активированный уголь, отличающийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002381065
Дата охранного документа: 10.02.2010
11.03.2019
№219.016.d98a

Способ подавления роста опухолей

Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении злокачественных опухолей. Способ заключается во внутривенном введении металлокомплекса - катализатора окисления субстрата, затем аскорбиновой кислоты - субстрат окисления. Затем нагревают опухолевую...
Тип: Изобретение
Номер охранного документа: 0002376999
Дата охранного документа: 27.12.2009
11.03.2019
№219.016.d9e1

Многослойный фильтрующий материал

Изобретение относится к области тонкой очистки воздуха от аэрозолей и газов, в частности от монооксида углерода, с помощью нетканых фильтрующих материалов. Заявленный многослойный фильтрующий материал из полисульфона состоит из трех слоев, причем второй (рабочий) слой выполнен из волокон...
Тип: Изобретение
Номер охранного документа: 0002379089
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.dd17

Сенсибилизатор и способ фотообеззараживания воды

Изобретение относится к химии и химической технологии, в частности, к фталоцианиновым сенсибилизаторам и их применению для очистки воды от бактериального загрязнения. Предложены новые фталоцианины, представляющие собой кватернизованные производные тетра(3-тиофенил)фталоцианинов алюминия и цинка...
Тип: Изобретение
Номер охранного документа: 0002448135
Дата охранного документа: 20.04.2012
11.03.2019
№219.016.dd46

Гетерогенный сенсибилизатор и способ фотообеззараживания воды

Изобретение относится к химии и химической технологии. Проводят фотообеззараживание воды с применением излучения видимого диапазона в присутствии кислорода и сенсибилизатора. В качестве сенсибилизатора используют гетерогенный сенсибилизатор общей формулы: где R=Cl, NHCHCHSONa, NR X,...
Тип: Изобретение
Номер охранного документа: 0002447027
Дата охранного документа: 10.04.2012
04.04.2019
№219.016.fbb4

Способ получения фталоцианина цинка

Изобретение относится к органической химии, а именно к улучшенному способу получения фталоцианина цинка высокой степени чистоты, который может быть использован в качестве фотосенсибилизатора для фотодинамической терапии. Способ осуществляют взаимодействием фталонитрила с солью цинка при...
Тип: Изобретение
Номер охранного документа: 0002281952
Дата охранного документа: 20.08.2006
+ добавить свой РИД