×
26.02.2019
219.016.c826

Результат интеллектуальной деятельности: СПОСОБ СОЗДАНИЯ НАНОРАЗМЕРНЫХ ДИЭЛЕКТРИЧЕСКИХ ПЛЁНОК НА ПОВЕРХНОСТИ InP С ИСПОЛЬЗОВАНИЕМ ОКСИДА И ФОСФАТА МАРГАНЦА

Вид РИД

Изобретение

Аннотация: Использование: для формирования наноразмерных диэлектрических пленок. Сущность изобретения заключается в том, что способ создания наноразмерных диэлектрических пленок на поверхности InP включает предварительную обработку полированных пластин InP травителем HSO:HOHO=2:1:1 в течение 10-12 мин, многократное промывание в бидистиллированной воде, высушивание на воздухе, формирование на поверхности пластин InP слоя MnO толщиной 25-30 нм методом магнетронного распыления мишени, термооксидирование образцов при температуре 450-550°С в течение 40-70 мин в потоке кислорода в присутствии фосфата марганца Mn(PO). Технический результат: обеспечение возможности формирования наноразмерных диэлектрических пленок на поверхности InP с толщиной в пределах 70-110 нм и удельным сопротивлением от 4,8⋅10 до 1,5⋅10 Ом⋅см. 4 ил.

Изобретение относится к области формирования наноразмерных диэлектрических пленок на поверхности полупроводников группы AIIIBV и может быть использовано в полупроводниковой микроэлектронике, в частности, для создания МДП-структур (металл - диэлектрик - полупроводник).

Известно, что формирование диэлектрических пленок на полупроводниках группы AIIIBV возможно при использовании физических методов осаждения (методы магнетронного распыления, электронно-лучевого испарения и т.д.) и химических процессов, протекающих на поверхности полупроводника (термическое, анодное, плазменное оксидирование и т.д.). В работе [Агаев В.В. Влияние диэлектрической пленки SrF2 на люминесцентные свойства n-InP / В.В. Агаев, В.А. Созаев, Г.И. Яблочкина //Журнал технической физики. - 2004. - Т. 74, №11. - С. 141-142] на поверхности пленок фосфида индия методом вакуумного испарения осаждались диэлектрические пленки SrF2, являющиеся эффективным защитным покрытием для InP. В работе [Effects of fluorine incorporation on the electrical properties of atomic-layer-deposited Al2O3 gate dielectric on InP substrate / Chen Y. Т., H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, J.C. Lee // Journal of the electrochemical society. -2010. - Vol. 157, No. 3. - P. G71-G75] на поверхность p-InP были осаждены диэлектрические слои оксида алюминия методом атомно-слоевого осаждения с последующим внедрением фтора, что позволило значительно улучшить электрофизические характеристики сформированных гетероструктур. Метод электронно-лучевого испарения при сравнительно низких температурах (до 200°С) позволяет осаждать на поверхность InP диэлектрические пленки оксида магния, как указано в работе [Kim Т.W. Microstructural and electrical properties of MgO thin films grown on p-InP (100) substrates at low temperature / T.W. Kim, Y.S. You, T.W. Kim // Applied surface science. - 2001. - Vol. 180, No. 1-2. -P. 162-167].

Термическое оксидирование является одним из самых простых методов синтеза пленок разнообразных оксидов. Термооксидирование полупроводников группы AIIIBV, в отличие от аналогичного процесса на кремнии, приводит к созданию пленок с неудовлетворительными электрофизическими характеристиками, несовершенными внутренними границами раздела, является нетехнологичным с точки зрения длительности процесса формирования. Хемостимулированное термооксидирование фосфида индия позволяет решать эту проблему за счет блокирования отрицательного канала связи между реакциями покомпонентного окисления при собственном термооксидировании полупроводников, ускорения формирования пленок в сравнении с процессом собственного оксидирования (в том числе и за счет разветвления посредством продуктов превращения), целенаправленного изменения состава пленок, его компонентного и фазового распределения по толщине пленки, снижения рабочих параметров процесса и предотвращения деградации; пленок [Миттова И.Я. Влияние физико-химической природы хемостимулятора, способа и метода его введения в систему на механизм термооксидирования GaAs и InP / И.Я. Миттова // Неорганические материалы. - 2014. - Т. 50, №9. - С. 948-955].

Наиболее близкой работой является способ, взятый за прототип [Влияние магнетронно напыленного слоя MnO2 на кинетику термооксидирования InP, состав и морфологию синтезированных пленок/ Н.Н. Третьяков, И.Я. Миттова, Б.В. Сладкопевцев, А.А. Самсонов, С.Ю. Андреенко // Неорганические материалы. - 2017. - Т. 53, №1. - С. 41-48], согласно которому на предварительно обработанные полирующим травителем состава H2SO4 (ХЧ ГОСТ-4204-77,92.80 %-ная): H2O2(ОСЧ ТУ 6-02-570-750, 56%-ная): H2O=2: 1: 1 в течение 10 мин и многократно промытые в бидистиллированной воде полированные пластины InP (ФИЭ-1А ориентации (100), легированные оловом),, методом магнетронного распыления наносили слои MnO2 толщиной около 30 нм. Далее сформированные образцы MnO2/InP термооксидировали, в результате чего на поверхности полупроводника были синтезированы пленку сложного состава, характеризующиеся зеренной структурой со средним размером зерна 55 нм (АСМ).

Положительный эффект введения MnO2 состоит в увеличении темпа прироста толщины пленок по сравнению с собственным оксидированием и быстром химическом связывании индия с блокированием его диффузии в пленку. Недостатком предложенного способа является повышенное содержание оксидов, в частности, оксида индия, обусловливающее полупроводниковый, а не диэлектрический характер формирующихся пленок.

Задача данного изобретения заключается в разработке способа создания на поверхности InP диэлектрических наноразмерных пленок с использованием наноразмерного слоя MnO2 при сохранении технологичности и простоты метода.

Технический результат настоящего изобретения заключается в формировании наноразмерных диэлектрических пленок на поверхности InP с толщиной в пределах 70-110 нм и удельным сопротивлением от 4,8⋅108 до 1,5-1010 Ом⋅см.

Технический результат достигается тем, что в способе создания наноразмерных диэлектрических пленок на поверхности InP с использованием магнетронно нанесенного слоя MnO2 и вводимого в процессе термооксидирования фосфата марганца проводят предварительную обработку полупроводника травителем в течение 10-12 минут, многократное промывание в бидистиллированной воде и высушивание на воздухе, формирование слоя MnO2 толщиной 25-30 нм методом магнетронного распыления мишени из прессованного порошка диоксида марганца, а согласно изобретению, последующее термооксидирование образцов MnO2/InP проводят при температурах 450-550°С в течение 40-70 мин. в потоке кислорода в присутствии фосфата марганца Mn3(PO4)2, испаряющегося из контейнера.

На фиг. 1 приведена таблица значений относительного увеличения толщины оксидной пленки при термическом оксидировании образцов MnO2/InP под воздействием вводимого через газовую фазу Mn3(PO4)2 в различных режимах: а) в сравнении с эталоном InP; б) в сравнении с образцом MnO2/InP

На фиг. 2 приведены ИК-спектры поглощения образцов MnO2/InP, оксидированных под воздействием вводимого из газовой фазы Mn3(PO4)2, после термооксидирования при 500°С в течение 60 минут.

На фиг. 3 приведены данные об идентифицированных фазах (метод рентгенофазового анализа, РФА) в образцах MnO2/InP, оксидированных под воздействием вводимого из газовой фазы Mn3(PO4)2, при различных температурах за время 60 мин.

На фиг. 4 приведена таблица значений удельных сопротивлений образцов, синтезированных термооксидированием при различных температурных режимах.

Способ реализуется следующим образом.

Пример 1.

Перед магнетронным нанесением наноразмерных слоев диоксида марганца для удаления естественного оксидного слоя и разного рода загрязнений поверхность полированных пластин InP обрабатывали травителем состава H2SO4 (ХЧ ГОСТ-4204-77, 92.80%-ная): H2O2(ОСЧ ТУ 6-02-570-750, 56%-ная): H2O=2: 1: 1 в течение 12 минут, после этого пластины трижды промывали в бидистиллированной воде и высушивали на воздухе.

Нанесение наноразмерного слоя хемостимулятора MnO2 на предварительно подготовленную поверхность InP проводили методом магнетронного распыления мишени, спрессованной из порошка диоксида марганца (диаметр мишени 50 мм, чистота - 99,8%, скорость распыления составляла ~2 нм/мин, время - 15 мин), в атмосфере аргона (давление процессного газа - 10⋅10-3 Torr).

Далее навеску порошка Mn3 (PO4)2(m=0.3 г) помещали в цилиндрический кварцевый контейнер (до отметки на этом контейнере), крышкой которого служила пластина оксидируемого InP с магнетронно нанесенным слоем MnO2. Расстояние от поверхности порошка фосфата марганца до рабочей стороны пластины было постоянным и составляло 10 мм. Контейнер устанавливали в предварительно разогретую до 450°С печь резистивного нагрева (МТП-2М-50-500), в которую через шлиф подавали поток кислорода с объемной скоростью 30 л/ч. Постоянство температуры в реакторе обеспечивали измерителем-регулятором ТРМ-10 (точность регулировки ±1°С). Через каждые 10 минут оксидируемый образец извлекали из реактора, обновляли навеску модификатора и продолжали оксидирование до достижения общего времени процесса, равного 60 минутам. Толщину растущих пленок контролировали методом лазерной эллипсометрии, для указанных условий термооксидирования толщина получившейся в итоге пленки составила 70±1 нм.

Как следует из таблицы на фиг. 1, предлагаемый способ значительно интенсифицирует процесс роста пленок как по сравнению с оксидированием чистого InP, так и по сравнению с оксидированием фосфида индия в присутствии только магнетронно нанесенных слоев MnO2. Данные ИК-спектроскопии и РФА (фиг. 2 и 3) свидетельствуют о том, что в полученных пленках практически отсутствуют свободные оксиды индия и марганца и Имеет место широкий ряд фосфатов индия и марганца, что приводит к формированию именно диэлектрических пленок. На фиг. 4 приведены данные об удельном сопротивлении, для указанного режима формирования оно составляет 2,1⋅109 Ом⋅см. Как следует из полученных результатов, сформированные предлагаемым способом пленки являются диэлектрическими.

Пример 2. Способом, описанным в примере 1, увеличив температуру оксидирования до 500°С, получали диэлектрические пленки на поверхности InP. На фиг. 4 представлены данные удельного сопротивления пленок, для указанного режима оксидирования оно составляет максимальное для всего температурного интервала значение 1,5⋅1010 Ом⋅см. Для указанных условий термооксидирования толщина получившейся в итоге пленки составила 84±1 нм (по данным лазерной эллипсометрии).

Способ создания наноразмерных диэлектрических пленок на поверхности InP, включающий предварительную обработку полированных пластин InP травителем НSО:НO:НО=2:1:1 в течение 10-12 мин, многократное промывание в бидистиллированной воде, высушивание на воздухе, формирование на поверхности пластин InP слоя МnО толщиной 25-30 нм методом магнетронного распыления мишени, термооксидирование образцов при температуре 450-550°С в течение 40-70 мин в потоке кислорода, отличающийся тем, что в процессе термооксидирования через газовую фазу дополнительно вводится фосфат марганца.
СПОСОБ СОЗДАНИЯ НАНОРАЗМЕРНЫХ ДИЭЛЕКТРИЧЕСКИХ ПЛЁНОК НА ПОВЕРХНОСТИ InP С ИСПОЛЬЗОВАНИЕМ ОКСИДА И ФОСФАТА МАРГАНЦА
СПОСОБ СОЗДАНИЯ НАНОРАЗМЕРНЫХ ДИЭЛЕКТРИЧЕСКИХ ПЛЁНОК НА ПОВЕРХНОСТИ InP С ИСПОЛЬЗОВАНИЕМ ОКСИДА И ФОСФАТА МАРГАНЦА
СПОСОБ СОЗДАНИЯ НАНОРАЗМЕРНЫХ ДИЭЛЕКТРИЧЕСКИХ ПЛЁНОК НА ПОВЕРХНОСТИ InP С ИСПОЛЬЗОВАНИЕМ ОКСИДА И ФОСФАТА МАРГАНЦА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 86.
26.02.2019
№219.016.c7fd

Композиционный материал на основе угля активированного и тритерпенового сапонина

Изобретение относится к фармацевтической промышленности, а именно к композиционному материалу на основе угля обыкновенного и способу его получения. Композиционный материал на основе угля, активированного при температуре 900-1000°С, содержит иммобилизованный на угле тритерпеновый сапонин в...
Тип: Изобретение
Номер охранного документа: 0002680600
Дата охранного документа: 25.02.2019
02.03.2019
№219.016.d1f3

Способ определения солей фитиновой кислоты в семенах растений

Изобретение относится к аналитической химии, предназначено для определения органического соединения фитина в семенах растений. Способ определения солей фитиновой кислоты в семенах растений включает экстракцию фитина из сырья соляной кислотой, проведение дополнительной очистки солянокислой...
Тип: Изобретение
Номер охранного документа: 0002680833
Дата охранного документа: 28.02.2019
08.03.2019
№219.016.d419

Способ отбора материнских растений picea pungens engelm., продуцирующих семенное потомство с разным уровнем стабильности генетического материала и лучшими морфометрическими показателями

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора материнских растений Picea pungens Engelm., продуцирующих семенное потомство с разным уровнем стабильности генетического материала, включает сбор и проращивание семян фенотипически здоровых материнских...
Тип: Изобретение
Номер охранного документа: 0002681105
Дата охранного документа: 04.03.2019
16.03.2019
№219.016.e1bc

Способ идентификации осмотолерантных дрожжей zygosaccharomyces rouxii на основе пцр в реальном времени

Изобретение относится к биотехнологии и может быть использовано в пищевой промышленности при идентификации осмотолерантных дрожжей Zygosaccharomyces rouxii. Способ включает предварительное обогащение дрожжей, осаждение их центрифугированием, выделение ДНК с проведением ПЦР в реальном времени,...
Тип: Изобретение
Номер охранного документа: 0002682041
Дата охранного документа: 14.03.2019
04.04.2019
№219.016.fb1c

Способ количественного определения производных 5-нитроимидазола (группы нидазолов)

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств, и может быть использовано при количественном определении производных 5-нитроимидазола (группы нидазолов) в субстанциях. Способ количественного определения производных 5-нитроимидазола...
Тип: Изобретение
Номер охранного документа: 0002683783
Дата охранного документа: 02.04.2019
06.04.2019
№219.016.fdba

Способ количественного определения производных пиперидина (группы бутирофенонов)

Изобретение относится к фармацевтическому анализу и может быть использовано для количественного определения производных пиперидина (группы бутирофенонов), а именно галоперидола, галоперидола деканоата, трифлуперидола, диклонина, эбастина, флуанизина, толперизона, дроперидола, бенперидола и...
Тип: Изобретение
Номер охранного документа: 0002684101
Дата охранного документа: 04.04.2019
31.05.2019
№219.017.708c

Ингибиторы коррозии меди и медьсодержащих сплавов на основе 5-алкилсульфонил-3-амино-1,2,4-триазолов

Изобретение относится к технике защиты металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов. Ингибитор коррозии меди и ее сплавов содержит гетероциклическое органическое соединение класса азолов, при этом в...
Тип: Изобретение
Номер охранного документа: 0002689831
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.7209

Ингибиторы коррозии меди и медьсодержащих сплавов на основе 5-алкилсульфинил-3-амино-1,2,4-триазолов

Изобретение относится к защите металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов. Ингибитор коррозии меди и ее сплавов содержит гетероциклическое органическое соединение класса азолов, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002690124
Дата охранного документа: 30.05.2019
13.06.2019
№219.017.817d

Способ количественного определения лекарственных средств группы вастатинов

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств. Способ количественного определения лекарственных средств группы вастатинов заключается в растворении анализируемой пробы при комнатной температуре и перемешивании до полного...
Тип: Изобретение
Номер охранного документа: 0002691066
Дата охранного документа: 10.06.2019
14.06.2019
№219.017.82c3

Способ использования соединений 6-гидрокси-2,2,4-триметил-1,2-дигидрохинолина, его производных и их гидрированных аналогов в качестве стимуляторов роста для видов рода rhododendron l.

Изобретение относится к сельскому хозяйству. Для стимуляции роста растений видов Rhododendron ledebourii и Rhododendron smirnovii используют одно из соединений, выбранных из группы: 6-гидрокси-2,2,4-триметил-1,2,3,4-тетрагидрохинолина в концентрации 0,05-0,1%;...
Тип: Изобретение
Номер охранного документа: 0002691377
Дата охранного документа: 11.06.2019
Показаны записи 1-10 из 10.
10.01.2015
№216.013.1b4b

Способ прецизионного легирования тонких пленок на поверхности арсенида галлия

Изобретение относится к области синтеза тонких пленок на поверхности полупроводников AB и может быть применено в технологии создания твердотельных элементов газовых сенсоров. Технический результат изобретения заключается в создании на поверхности арсенида галлия тонкой оксидной пленки,...
Тип: Изобретение
Номер охранного документа: 0002538415
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1bed

Способ создания композиционной мембраны для очистки водорода

Изобретение относится к созданию селективных мембран, функционирующих за счет избирательной диффузии газов сквозь тонкую пленку металлов или их сплавов. Способ включает нанесение на двухслойную керамическую подложку со сквозной пористостью селективной пленки металла или его сплава методом...
Тип: Изобретение
Номер охранного документа: 0002538577
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1efe

Фармацевтическая композиция в форме таблетки и способ ее получения

Изобретение относится к области медицины, химико-фармацевтической промышленности и касается средств, обладающих ноотропной и нейромодуляторной активностью. Фармацевтическая композиция в форме таблетки, обладающая ноотропной и нейромодуляторной активностью, характеризующаяся тем, что она...
Тип: Изобретение
Номер охранного документа: 0002539375
Дата охранного документа: 20.01.2015
10.04.2015
№216.013.40d9

Способ синтеза люминофора на основе ортованадата иттрия

Изобретение может быть использовано для изготовления люминесцентных источников света, люминесцентных панелей, экранов и индикаторов, оптических квантовых генераторов. Оксид ванадия (V) растворяют в 10% растворе NaOH. К полученному раствору приливают в стехиометрическом количестве раствор...
Тип: Изобретение
Номер охранного документа: 0002548089
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4979

Способ создания наноразмерных наноструктурированных оксидных пленок на inp с использованием геля пентаоксида ванадия

Изобретение относится к области изготовления наноструктур, а именно к синтезу оксидных пленок нанометровой толщины на поверхности полупроводников класса АB, и может быть применено при формировании элементов электроники на поверхности полупроводников, в высокочастотных полевых транзисторах и...
Тип: Изобретение
Номер охранного документа: 0002550316
Дата охранного документа: 10.05.2015
10.02.2016
№216.014.c3d8

Способ получения нанокристаллического магнитного порошка допированного ортоферрита иттрия

Изобретение относится к получению нанокристаллического магнитного порошка допированного ортоферрита иттрия. Исходный раствор, содержащий нитрат железа Fe(NO), нитрат иттрия Y(NO) и в качестве допанта нитрат бария Ва(NO), кипятят в течение 5 мин. В полученный охлажденный до комнатной температуры...
Тип: Изобретение
Номер охранного документа: 0002574558
Дата охранного документа: 10.02.2016
19.01.2018
№218.016.0a96

Способ прецизионного легирования тонких пленок на поверхности inp

Изобретение относится к области синтеза тонких пленок на поверхности InP и может быть применено в технологии создания твердотельных элементов газовых сенсоров на такие газы, как аммиак и угарный газ. Способ прецизионного легирования тонких пленок на поверхности InP включает обработку...
Тип: Изобретение
Номер охранного документа: 0002632261
Дата охранного документа: 03.10.2017
18.01.2019
№219.016.b10d

Способ создания наноразмерных диэлектрических пленок на поверхности gaas с использованием магнетронно сформированного слоя диоксида марганца

Использование: для формирования диэлектрических пленок нанометровой толщины на поверхности полупроводников AB. Сущность изобретения заключается в том, что способ создания наноразмерных диэлектрических пленок на поверхности GaAs с использованием магнетронно сформированного слоя диоксида...
Тип: Изобретение
Номер охранного документа: 0002677266
Дата охранного документа: 16.01.2019
18.10.2019
№219.017.d7e1

Жидкая лекарственная форма для перорального введения, обладающая ноотропной активностью

Изобретение относится к химико-фармацевтической промышленности и медицине и касается новой жидкой лекарственной формы для перорального введения, обладающей ноотропной активностью, содержащей в качестве активного компонента кальциевую соль гопантеновой кислоты в количестве 5-20 мас.%, парабен в...
Тип: Изобретение
Номер охранного документа: 0002703293
Дата охранного документа: 16.10.2019
17.05.2023
№223.018.6483

Фармацевтические композиции для лечения инфекционно-воспалительных заболеваний

Изобретение относится к области медицины и химико-фармацевтической промышленности, а именно к улучшенным субстанциям грамицидина С, содержащим определенные количества новых циклических декапептидов из семейства грамицидинов С, а также к содержащим их фармацевтическим композициям для лечения...
Тип: Изобретение
Номер охранного документа: 0002794363
Дата охранного документа: 17.04.2023
+ добавить свой РИД