×
26.02.2019
219.016.c7e5

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА СТАЛЬНУЮ ПОДЛОЖКУ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения покрытий и может быть использовано в различных отраслях машиностроения при изготовлении или восстановлении деталей для придания поверхности повышенных характеристик сопротивления коррозии. Способ нанесения покрытия на стальную подложку газодинамическим напылением включает нанесение промежуточного и основного слоев покрытия посредством нагрева сжатого воздуха и подачи его в сверхзвуковое сопло для формирования высокоскоростного воздушного потока, в который вводят соответствующую для каждого из указанных слоев порошковую смесь. При нанесении промежуточного слоя осуществляют нагрев сжатого воздуха до температуры 250-450°С, при этом в высокоскоростной воздушный поток вводят порошковую смесь, состоящую из оксида алюминия и алюминия при соотношении 1:1. Затем наносят основной слой, для чего в высокоскоростной воздушный поток вводят порошковую смесь, состоящую из оксида алюминия и никеля при соотношении 1:1. Каждый из промежуточного и основного слоев наносят толщиной 0,2-0,3 мм. Обеспечивается улучшение качества покрытия и повышение коррозионной стойкости стальной подложки с упомянутым покрытием, что позволяет повысить качество и ресурс эксплуатации стальных деталей с покрытием. 1 табл., 3 пр.

Изобретение относится к технологии нанесения покрытий на поверхности изделий, а именно к способам получения покрытий с использованием неорганического порошка, и может быть использовано в различных отраслях машиностроении.

Известен способ получения покрытия путем нанесения порошковых металлов, ускоренных подогреваемым газовым потоком в сверхзвуковом сопле. (См. авт. свид. СССР 1618778, кл. С23С 4/00, 1986 г.).

В этом способе обеспечивается ускорение частиц порошка до высоких скоростей (650-1200 м/сек), что позволяет получать покрытия с повышенной прочностью сцепления и невысокой пористостью.

Однако этот способ сравнительно дорог и технически сложен, так как для его реализации необходимо использовать дорогостоящие газы (например, гелий) и высокое давление рабочего газа (15-20 атм).

Наиболее близким к заявляемому решению является способ получения покрытия, включающий предварительный нагрев сжатого воздуха до температуры 400-500°С, подачу его в сверхзвуковое сопло, формирование в нем высокоскоростного воздушного потока, введение в этот поток механической смеси порошков из оксида алюминия и никеля в равных долях и нанесение порошкового покрытия толщиной 0,2-0,3 мм на основу. Перед нанесением покрытия на основу формируют на ней подложку путем предварительного нагрева сжатого воздуха до температуры 400-500°С, подачи его в сверхзвуковое сопло, формирования в нем высокоскоростного воздушного потока, введения в этот поток порошкового материала из оксида алюминия и меди в равных долях и нанесения порошкового покрытия на основу до формирования толщины слоя подложки 0,3-0,4 мм. (Патент РФ 2542196, С23С 24/04, 2013 г.)

Этот способ не трудоемок и не требует больших материальных затрат.

К основному недостатку способа можно отнести более низкую коррозионную стойкость такого покрытия, чем предлагаемого способа. Задачей заявляемого решения является улучшение качества покрытия, а именно повышение коррозионной стойкости.

Поставленная задача достигается тем, что предлагаемый способ нанесения покрытия на стальную подложку газодинамическим напылением, включает создание промежуточного и основного слоев покрытия посредством нагрева сжатого воздуха и подачу его в сверхзвуковое сопло для формирования высокоскоростного воздушного потока, в который вводят соответствующую для каждого из указанных слоев порошковую смесь, отличающийся тем, что при нанесении промежуточного слоя осуществляют нагрев сжатого воздуха до температуры 250-450°С, при этом в высокоскоростной воздушный поток вводят порошковую смесь, состоящую из оксида алюминия и алюминия при соотношении 1:1, после чего наносят основной слой, для чего в высокоскоростной воздушный поток вводят порошковую смесь, состоящую из оксида алюминия и никеля при соотношении 1:1, причем каждый из промежуточного и основного слоев наносят толщиной 0,2=0,3 мм.

Положительный результат подтверждается экспериментальными данными, полученными при исследованиях образцов стальных пластин с покрытием, нанесенным предложенным способом.

Испытания на сопротивление коррозии продолжительностью 12 недель (2016 часов) проводили по методике ускоренных испытаний при полном погружении образцов из стали 20 и стали 20 с покрытием, нанесенным газодинамическим напылением, в ванну с электролитом (3% раствор NaCl).

Пример 1.

Предварительно на стальную основу наносят подложку. Для этого производят нагрев сжатого воздуха до температуры 250-450°С, подают его в сопло, формируют в нем высокоскоростной воздушный поток, вводят в этот поток механическую смесь порошков из оксида алюминия и никеля в соотношении 1:1 и наносят порошковое покрытие толщиной 0,2-0,3 мм. Затем производят нанесение основного покрытия. Для этого предварительно нагревают сжатый воздух до температуры 300-500°С, подают этот поток порошковый материал из оксида алюминия и никеля в соотношении 1:1 и наносят порошковое покрытие толщиной 0,2-0,3 мм.

Пример 2.

Вели процесс по технологии, описанной в примере 1, но в качестве порошкового покрытия предварительно нанесенного на стальную основу используют порошковый материал из оксида алюминия и цинка в соотношении 1:1.

Пример 3.

Одновременно проводили испытания образца и напыление покрытия по способу прототипу, где в качестве порошкового покрытия, предварительно нанесенного на стальную основу используют порошковый материал из оксида алюминия и меди в соотношении 1:1.

Результаты испытания представлены в таблице 1.

У образцов с нанесенным подслоем из меди (пример 3) количество продуктов коррозии было значительно меньше, как на образцах, так и на дне ванны, чем при напылении только слоя никеля (пример 2). При использовании в качестве подслоя алюминия (пример 1) на поверхности никеля формируются крупные частицы (кристаллы) белого цвета, однако в значительно меньшем количестве. На поверхности ванны с раствором, также, отмечается наличие пузырей (пены), но в значительно меньшем объеме. Образцы с подслоем цинка остаются достаточно чистыми в течение всего периода испытаний, как и раствор для испытания.

Коррозионные потери массы образцов из стали 20, где покрытие никеля наносится на подслой из меди (пример 3) достаточно низкие. Их появление отмечается только после 1848 часов нахождения в коррозионной среде и после завершения испытаний они составляют 5,9×10-15 кг/м2. Коррозионные потери массы порошкового покрытия, где в качестве подслоя используется цинк (пример 3), имеют тенденцию к повышению с 1,5×10-15 кг/м2 до 30,6×10-15 кг/м2 при 1512 часов испытаний. Затем коррозионные потери массы снижаются до 24,7×10-15 кг/м2 и сохраняются на этом уровне до конца испытаний. Нанесение подслоя из алюминия (пример 1) оказывается самым эффективным для повышения коррозионной стойкости образцов из низкоуглеродистой стали. На протяжении 336 часов испытаний коррозионные потери массы образца с порошковым покрытием алюминий - никель уменьшаются с 4,4×10-15 кг/м2 до 0,4×10-15 кг/м2 и в дальнейшем снижаются до нуля.

Как показано в таблице 1, после нанесения покрытия по оптимизированной технологии согласно изобретению (пример 1) коррозия у стальной подложки практически отсутствует по сравнению с известной технологией нанесения никелевого покрытия газодинамическим напылением по способу-прототипу. При отклонении параметров нанесения покрытия от предложенной технологии (пример 2) параметры коррозионной устойчивости мало отличаются от соответствующих параметров покрытия, нанесенного известным способом.

Использование изобретения позволяет повысить качество и ресурс эксплуатации стальных деталей с покрытием никеля, нанесенным газодинамическим напылением, в коррозионной среде.

Способ нанесения покрытия на стальную подложку газодинамическим напылением, включающий нанесение промежуточного и основного слоев покрытия посредством нагрева сжатого воздуха и подачу его в сверхзвуковое сопло для формирования высокоскоростного воздушного потока, в который вводят соответствующую для каждого из указанных слоев порошковую смесь, отличающийся тем, что при нанесении промежуточного слоя осуществляют нагрев сжатого воздуха до температуры 250-450°С, при этом в высокоскоростной воздушный поток вводят порошковую смесь, состоящую из оксида алюминия и алюминия при соотношении 1:1, после чего наносят основной слой, для чего в высокоскоростной воздушный поток вводят порошковую смесь, состоящую из оксида алюминия и никеля при соотношении 1:1, причем каждый из промежуточного и основного слоев наносят толщиной 0,2-0,3 мм.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 79.
21.07.2018
№218.016.72f4

Способ измерения реакции потовых желез человека на психофизиологические воздействия

Изобретение относится к медицине, а именно к физиологии и функциональной диагностике, и может быть использовано для измерения реакции потовых желез человека на психофизиологическое состояние. Для этого на поверхности тела человека устанавливают прилегающий эластичный электронагреватель с...
Тип: Изобретение
Номер охранного документа: 0002661708
Дата охранного документа: 19.07.2018
24.07.2018
№218.016.73e5

Устройство для установки обсадных фильтров в глубоких перфорационных каналах-волноводах

Изобретение относится к техническим средствам для строительства и ремонта нефтяных и газовых скважин, а именно к средствам вторичного вскрытия продуктивных пластов. Устройство для установки обсадных фильтров в глубоких перфорационных каналах-волноводах содержит полый корпус с установленной в...
Тип: Изобретение
Номер охранного документа: 0002661925
Дата охранного документа: 23.07.2018
25.08.2018
№218.016.7f3a

Устройство для балансировки

Изобретение относится к области машиностроения и может быть использовано при балансировке вращающихся тел. В предложенном устройстве нанесение на вращающееся балансируемое тело порций жидкого балансирующего вещества осуществляется под действием импульсных сил на корпус камеры с жидким...
Тип: Изобретение
Номер охранного документа: 0002664791
Дата охранного документа: 22.08.2018
08.11.2018
№218.016.9ab6

Способ очистки природных водоемов от сероводорода

Изобретение может быть использовано в области улучшения экологии природных водоемов с морской водой и их очистки от сероводорода. Для осуществления способа проводят подъем к поверхности сероводородсодержащих вод за счет аэролифта и выделение из них сероводорода с последующим разложением его...
Тип: Изобретение
Номер охранного документа: 0002671724
Дата охранного документа: 06.11.2018
14.11.2018
№218.016.9d02

Переливной клапан бурильной колонны

Изобретение относится к области бурения и ремонта скважин, в частности к устройствам для сообщения внутренней полости технологической колонны труб с затрубным пространством при проведении спускоподъемных операций для заполнения колонны скважинной жидкостью и опорожнения, а именно к переливным...
Тип: Изобретение
Номер охранного документа: 0002672290
Дата охранного документа: 13.11.2018
09.12.2018
№218.016.a4f8

Пространственный механизм для микропозиционирования

Изобретение относится к механизмам, применяемым в технике для получения заданного движения выходного звена. Пространственный механизм для микропозиционирования содержит установленную на основании круговую направляющую, выходное звено, шесть кинематических цепей, соединяющих установленные на...
Тип: Изобретение
Номер охранного документа: 0002674357
Дата охранного документа: 07.12.2018
09.12.2018
№218.016.a4f9

Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления

Изобретение относится к области машиностроения и может быть использовано для финишной обработки деталей сложной пространственной формы, в частности лопаток газотурбинных двигателей (ГТД). Заготовку перемещают в зону обработки и производят сканирование геометрических параметров заготовки в...
Тип: Изобретение
Номер охранного документа: 0002674358
Дата охранного документа: 07.12.2018
05.02.2019
№219.016.b6f9

Способ деформационной обработки длинномерных полуфабрикатов тонкого сечения из сплавов tini с эффектом памяти формы

Изобретение относится к электропластической формообразующей обработке титан-никелевых сплавов для повышения их деформационной способности и эффекта памяти формы и может быть использовано в металлургии и машиностроении. Способ деформационной обработки длинномерных полуфабрикатов тонкого сечения...
Тип: Изобретение
Номер охранного документа: 0002678855
Дата охранного документа: 04.02.2019
07.02.2019
№219.016.b797

Стан для раскатки осесимметричных деталей газотурбинного двигателя

Изобретение относится к стану для раскатки осесимметричных деталей газотурбинного двигателя. Стан содержит механизмы для раскатки колец ступиц, валов и дисков из заготовок с центральным отверстием, механизмы вращения заготовок, электропечи для нагрева заготовок, пульт управления и систему...
Тип: Изобретение
Номер охранного документа: 0002679033
Дата охранного документа: 05.02.2019
09.02.2019
№219.016.b904

Манипулятор для субмикронных перемещений

Изобретение относится к машиностроению и может быть использовано в туннельной и электронной микроскопии, прецизионной литографии, микрохирургии и биологических исследованиях. Манипулятор для субмикронных перемещений содержит установленное на основании 1 выходное звено в виде передвижной...
Тип: Изобретение
Номер охранного документа: 0002679260
Дата охранного документа: 06.02.2019
Показаны записи 1-7 из 7.
10.07.2013
№216.012.5454

Способ нанесения покрытия на металлическую основу

Изобретение относится к технологии получения покрытий и может быть использовано в машиностроении при изготовлении или восстановлении деталей. Способ нанесения покрытия включает предварительный нагрев сжатого воздуха до температуры 300-500°С, подачу его в сверхзвуковое сопло, формирование в нем...
Тип: Изобретение
Номер охранного документа: 0002487191
Дата охранного документа: 10.07.2013
10.11.2014
№216.013.0567

Способ получения покрытия

Изобретение относится к получению покрытий. Может использоваться в различных отраслях машиностроения при изготовлении или восстановлении деталей. Сжатый воздух предварительно нагревают до температуры 300-500°C, подают его в сверхзвуковое сопло и формируют в нем высокоскоростной воздушный поток....
Тип: Изобретение
Номер охранного документа: 0002532781
Дата охранного документа: 10.11.2014
20.02.2015
№216.013.29f3

Способ нанесения покрытия на стальную основу

Изобретение относится к технологии получения покрытий и может быть использовано в различных отраслях машиностроения при изготовлении или восстановлении деталей для придания поверхности повышенных характеристик сопротивления коррозии. Способ включает формирование на поверхности изделия подложки...
Тип: Изобретение
Номер охранного документа: 0002542196
Дата охранного документа: 20.02.2015
20.12.2015
№216.013.9b03

Способ оценки адгезионной прочности порошковых металлических покрытий со стальной поверхностью

Изобретение относится в способам оценки прочности сцепления металлических покрытий с основой из металлов и сплавов и может быть использовано в различных отраслях машиностроения, где применяются газотермический и газодинамический методы нанесения покрытий для придания поверхности повышенных...
Тип: Изобретение
Номер охранного документа: 0002571308
Дата охранного документа: 20.12.2015
25.08.2017
№217.015.cf76

Способ получения покрытия на стальной пластине

Изобретение относится к технологии получения покрытий и может быть использовано в различных отраслях машиностроения при изготовлении или восстановлении деталей для придания поверхности повышенных характеристик сопротивления коррозии. Способ получения покрытия на стальной пластине включает...
Тип: Изобретение
Номер охранного документа: 0002621088
Дата охранного документа: 31.05.2017
10.05.2018
№218.016.4164

Образец для оценки когезионной прочности порошковых металлических покрытий

Изобретение относится к образцу для оценки когезионной прочности металлических покрытий и может быть использовано в различных отраслях машиностроения, где применяются газотермические и газодинамический методы нанесения покрытий для оценки когезионной прочности порошковых металлических покрытий....
Тип: Изобретение
Номер охранного документа: 0002649085
Дата охранного документа: 29.03.2018
10.11.2019
№219.017.dfc1

Способ получения покрытия на стальной подложке

Изобретение относится к технологии получения покрытий и может быть использовано в различных отраслях машиностроения при изготовлении или восстановлении деталей для придания поверхности повышенных механических характеристик. Способ получения покрытия на стальной подложке включает предварительный...
Тип: Изобретение
Номер охранного документа: 0002705488
Дата охранного документа: 07.11.2019
+ добавить свой РИД