×
23.02.2019
219.016.c651

Результат интеллектуальной деятельности: НАНОМОДИФИЦИРОВАННЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ НИКЕЛЕВОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Наномодифицированный электролит для электрохимического осаждения никелевого покрытия содержит соли никеля - сернокислый семиводный никель и хлористый шестиводный никель, борсодержащую добавку и воду, при этом он дополнительно содержит углеродный наноматериал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, при следующем соотношении компонентов, г/л: сернокислый семиводный никель - 250-400, хлористый шестиводный никель - 50-70, борная кислота 30-40 и наноуглеродный материал - 0,05-0,08. Технический результат - получение беспористых никелевых покрытий с высокой микротвердостью при увеличении скорости осаждения никелевого покрытия. 1 з.п. ф-лы.

Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения коррозионностойкого, твердого, термо- и износостойкого покрытия в машиностроении, электронике и других отраслях промышленности.

Известен электролит для электрохимического осаждения многофункциональных покрытий на основе никеля [1], содержащий соли никеля - сернокислый семиводный никель и хлористый шестиводный никель, сахарин, боросодержащую и буферирующие добавки в виде декагидробората натрия и малоновой кислоты, натрий фтористый, формальдегид, паратолуолсульфамид, смачиватель СВ-102 и воду. Такой электролит характеризуется следующим соотношением компонентов, г/л:

Сернокислый семиводный никель - 300-400

Хлористый шестиводный никель - 20-40

Сахарин - 0,5-1,0

Декагидроборат натрия - 0,01-0,5

Малоновая кислота - 25-30

Натрий фтористый - 3,5-4,5

Формальдегид - 0,5-1,2

Паратолуолсульфамид - 1,0-1,5

Смачиватель СВ-102 - 0,01-0,05.

Недостатками такого электролита являются:

- большое количество компонентов, что усложняет приготовление электролита и делает невозможным подкрепление его при его истощении;

- низкая микротвердость получаемого покрытия;

- большая неравномерность получаемого покрытия.

Эти недостатки частично устранены в электролите для электрохимического осаждения сплава никель-бор [2]. Электролит содержит, г/л:

Сернокислый семиводный никель - 280-400

Двухлористый шестиводный никель - 25-60

Борную кислоту - 25-60

1,4 Бутиндиол - 0,2-1,5

Формальдегид - 0,02-1,5

Натриевую соль сахарина - 0,25-2,0

Натрия боргидрид - 0,1-2,0.

Такой состав позволяет расширить рабочий диапазон pH и увеличить скорость осаждения покрытий, уменьшить количество компонентов, однако характеризуется следующими недостатками:

- низкой микротвердостью получаемого покрытия;

- большой неравномерностью получаемого покрытия.

Технический результат изобретения заключается в получении беспористых никелевых покрытий с высокой микротвердостью при увеличении скорости осаждения никелевого покрытия.

Технический результат достигается тем, что наномодифицированный электролит для электрохимического осаждения никелевого покрытия, содержащий соли никеля - сернокислый семиводный никель и хлористый шестиводный никель, борсодержащую добавку и воду, согласно изобретению, дополнительно содержит углеродный наноматериал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, при следующем соотношении компонентов, г/л:

Сернокислый семиводный никель - 250-400

Хлористый шестиводный никель - 50-70

Борная кислота 30-40

Наноуглеродный материал - 0,05-0,08.

Наномодифицированный электролит может содержать наноуглеродный материал, введенный в состав электролита без очистки от никелевого катализатора, используемого для его синтеза, в количестве 0,05-0,08 г/л.

Такой электролит характеризуется меньшим количеством используемых компонентов, а при использовании углеродного наноматериала без очистки от никелевого катализатора меньшими денежными затратами, так как не требуется обработка наноматериала азотной кислотой для удаления катализатора.

Электролит готовят следующим образом.

Предварительно соли никеля растворяют раздельно в дистиллированной воде при температуре 40-60°С. Борную кислоту растворяют также раздельно в дистиллированной воде при температуре 75-80°С.

Все растворы смешивают и отстаивают в течение 7 суток. Подготовленный раствор декантируют в промежуточную емкость. Из промежуточной емкости раствор фильтруют под вакуумом через фильтровальную бумагу. Для удаления органических соединений в нагретый до 30°С электролит добавляют 10 г/л 6%-ной перекиси водорода. Электролит интенсивно перемешивают 10 минут. При той же температуре и интенсивном перемешивании в электролит добавляют 3 г/л активированного угля. Электролит отстаивают 12 часов, затем декантируют и фильтруют под вакуумом через фильтровальную бумагу. После этого в раствор электролита добавляют наноуглеродный материал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, и электролит обрабатывают на ультразвуковой установке с частотой 22 кГц для уменьшения размеров агломератов из наноуглеродных трубок и их более равномерного распределения в электролите. В качестве углеродного материала предпочтительно применение углеродного наноматериала «Таунит», производитель углеродного наноматериала ООО «НаноТехЦентр», Россия, г.Тамбов.

Подготовку поверхности деталей перед нанесением гальванического покрытия проводят стандартными способами с использованием известных растворов.

Осаждение проводят при pH 3,0-5,0, плотности тока 1,0-4,0 А/дм2 и температуре 45-60°С.

Пример 1

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Сернокислый семиводный никель - 254,6

Хлористый шестиводный никель - 67,5

Борная кислота 32,33

Наноуглеродный материал - 0,065.

Осаждение проводят при pH 3,5, плотности тока 4 А/дм2 и температуре 52°С.

В течение 50 мин получают покрытие средней толщиной 16 мкм.

Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали. Микротвердость, измеренная на микротвердомере ПМТ-3, составляет 1123 кг/мм2. Характеристики получаемого покрытия - микротвердость и пористость - соответствуют характеристикам хромовых покрытий, а равномерность полученного покрытия значительно превосходит хромовые. Это позволяет использовать предложенный электролит в машиностроении взамен электролита хромирования, который является более дорогим, высокотоксичным и имеет низкие рассеивающую способность и выход по току.

Пример 2

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Сернокислый семиводный никель - 254,6

Хлористый шестиводный никель - 67,5

Борная кислота 32,33

Наноуглеродный материал «Таунит» со следующими характеристиками:

количество графеновых слоев - не более 30,

диаметр волокон - от 15 до 40 нм,

длина - не менее 2 мкм,

количеством структурированного углерода не менее 95%,

неочищенный от никелевого катализатора - 0,07.

Осаждение проводят при pH 3,5, плотности тока 4 А/дм2 и температуре 52°С.

В течение 50 мин получают покрытие средней толщиной 43 мкм.

Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали. Микротвердость, измеренная на микротвердомере ПМТ-3, составляет 1009 кг/мм2. Характеристики получаемого покрытия - микротвердость и пористость - соответствуют характеристикам хромовых покрытий, а равномерность полученного покрытия значительно превосходит хромовые. Это позволяет использовать предложенный электролит в машиностроении взамен электролита хромирования, который является более дорогим, высокотоксичным и имеет низкие рассеивающую способность и выход по току. Кроме того, использование нано-углеродного материала «Таунит», неочищенного от никелевого катализатора, приводит к существенному (в 2,6 раза) увеличению скорости осаждения покрытия, в результате чего повышается производительность гальванооборудования.

Литература

1. Патент РФ №2149927, МПК C25D 3/56, 2000 г.

2. Патент РФ №2265086, МПК C25D 3/56, 2005 г.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
23.02.2019
№219.016.c650

Способ получения наномодифицированного гальванического никелевого покрытия

Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002411309
Дата охранного документа: 10.02.2011
Показаны записи 31-40 из 84.
12.01.2017
№217.015.5faf

Стабилизатор нагрузки управляемого моста колёсного трактора

Изобретение относится к транспорту, а именно к дополнительно устанавливаемым вспомогательным устройствам колесных тракторов. Стабилизатор нагрузки управляемого моста колесного трактора содержит силовой гидроцилиндр и тягово-догружающее устройство, состоящее из силового гидроцилиндра и...
Тип: Изобретение
Номер охранного документа: 0002590789
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6cd3

Устройство для самовытаскивания колесного трактора

Устройство содержит тягово-пружинный механизм, включающий буксирный трос, установленный в буксировочном устройстве передней части трактора и заблокированный в окончании витой пружины, буксирный трос, установленный и заблокированный между окончаниями витых пружин, а также буксирный трос,...
Тип: Изобретение
Номер охранного документа: 0002597332
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6efb

Пружинный стабилизатор колёсного трактора

Изобретение относится к области транспортного машиностроения. Пружинный стабилизатор колесного трактора содержит силовой гидроцилиндр, плоские пружины рессорного типа, передающую реактивную тягу, кронштейн с шарниром, установленный на раме трактора, вилочный направитель силового гидроцилиндра...
Тип: Изобретение
Номер охранного документа: 0002597434
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.72b3

Пневмоторсионный стабилизатор колебаний транспортного средства

Изобретение относится к транспорту, а именно к устройствам, устанавливаемым в ходовую часть колесного транспортного средства для стабилизации его колебаний в движении. Пневмоторсионный стабилизатор колебаний транспортного средства выполнен в виде конструкции, устанавливаемой на силовом...
Тип: Изобретение
Номер охранного документа: 0002598364
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.a2e7

Модифицированный наноуглеродом электролит анодирования детали из алюминия или его сплава

Изобретение относится к области гальванотехники и нанотехнологии. Электролит содержит серную кислоту, композицию «ЭКОМЕТ-А200» и порошок углеродного наноматериала «Таунит», введенный с помощью ультразвукового диспергатора, при этом он содержит компоненты при следующем соотношении, г/л: серная...
Тип: Изобретение
Номер охранного документа: 0002607075
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b441

Способ охлаждения дыхательной газовой смеси в средствах индивидуальной защиты органов дыхания

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно...
Тип: Изобретение
Номер охранного документа: 0002614028
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c6e3

Способ получения дисперсий углеродных наноматериалов

Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера...
Тип: Изобретение
Номер охранного документа: 0002618881
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cbe2

Способ получения мезопористого углерода

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до...
Тип: Изобретение
Номер охранного документа: 0002620404
Дата охранного документа: 25.05.2017
26.08.2017
№217.015.e195

Измеритель площади электрического импульса

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для измерения площади одиночного электрического импульса с выдачей результатов в цифровой форме. Техническим результатом является повышение точности работы устройства за счет применения следящей...
Тип: Изобретение
Номер охранного документа: 0002625632
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e4ed

Строительная композиция и комплексная добавка для строительной композиции

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных, преимущественно бетонных или растворных, смесей в производстве бетонных и железобетонных изделий и конструкций сборного и монолитного строительства и в других производствах....
Тип: Изобретение
Номер охранного документа: 0002626493
Дата охранного документа: 28.07.2017
+ добавить свой РИД