×
23.02.2019
219.016.c606

Результат интеллектуальной деятельности: Подшипник скольжения межроторной опоры

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного моторостроения и может быть использовано в подшипниках скольжения межроторных опор газотурбинных двигателей. Подшипник скольжения межроторной опоры включает наружное и внутреннее кольца. выполненные из металлокерамоматричного материала на основе соответственно карбонитрида титана и нитрида алюминия при заданном соотношении компонентов. Кольца расположены внутри вала роторов высокого и низкого давления. Технический результат: обеспечение требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С, что позволяет повысить износостойкость и долговечность подшипника скольжения межроторной опоры газотурбинного двигателя. 2 ил., 1 табл.

Изобретение относится к области авиационного моторостроения, а именно к межроторным опорам газотурбинных двигателей.

Решение перспективных задач в части создания самолетов с высокими показателями эффективности заставляет предусматривать все более высокие значения газодинамических параметров рабочего цикла двигателя. Возникающие нагрузки носят переменный характер по величине, интенсивности и частоте воздействия приложенных сил, поэтому подшипники опор роторов оказываются в сложных условиях, значительно сокращающих их ресурс. Использование традиционно применяемых конструкционных материалов подшипников скольжения, где используются пары трения «чугун-бронза», работоспособных при максимальной удельной нагрузке до 2,0 МПа и предельной скорости, не превышающей 1 м/с, в конструкции опор газотурбинного двигателя невозможно из-за напряженных условий эксплуатации. Расчетные значения удельной нагрузки для подшипников скольжения межроторной опоры турбины высокого давления должны составлять до 1,7 МПа при окружной скорости в зоне контакта поверхностей скольжения до 40 м/с, что значительно меньше необходимых значений параметров.

Известен подшипник скольжения межроторной опоры газотурбинного двигателя, включающий наружное и внутреннее кольцо, предназначенные для взаимодействия с валом ротора высокого давления и валом ротора низкого давления и выполненные из композиционных керамических материалов («Исследование возможности использования керамических авиационных подшипников скольжения нового поколения в конструкциях опор роторов газотурбинных двигателей», «Двигатель» №3, 2013 г., стр. 24-26). В известном техническом решении применение композиционных керамических материалов на основе карбида кремния и карбонитрида титана при изготовлении колец подшипника скольжения обеспечивает повышение эффективности работы подшипника за счет снижения энергетических потерь на трение. Недостатком известного технического решения является зависимость износостойкости пары трения от величины конструктивного зазора между кольцами, определяемого составами и свойствами материала колец, исключающего возможность возникновения граничного трения, и от действия возникающих в опоре при режимах, близких к критическим режимам работы ротора, знакопеременных изгибающих моментов. Указанный недостаток влияет на снижение надежности межроторной опоры.

Наиболее близким по технической сущности и назначению к предлагаемому изобретению является подшипник скольжения межроторной опоры газотурбинного двигателя, включающий наружное кольцо расположенное внутри вала ротора высокого давления, и внутреннее кольцо, закрепленное на валу ротора низкого давления, выполненные из композиционных керамических материалов (RU 2647021, 2018). В известном техническом решении применение композиционных керамических материалов на основе нитрида титана и дисперсно-упрочненного реакционно-спеченного карбонитрида кремния при изготовлении колец подшипника скольжения обеспечивает износостойкость подшипника за счет обеспечения конструктивного зазора в паре трения в процессе рабочего цикла. При вращении колец подшипника в процессе рабочего цикла в результате трения происходит повышение температуры колец. Недостатком известного технического решения является зависимость значений микротвердости материала на основе дисперсно-упрочненного реакционно-спеченного карбонитрида от температуры материала, повышением которой снижается микротвердость и соответственно износостойкость и долговечность подшипника.

Техническая проблема, на решение которой направлено изобретение, заключается в повышении износостойкости и долговечности подшипника скольжения межроторной опоры газотурбинного двигателя.

Технический результат, достигаемый при осуществлении предлагаемого технического решения, заключается в обеспечении требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С.

Результат, обеспечиваемый заявленным изобретением, достигается тем, что подшипник скольжения межроторной опоры включает наружное кольцо, предназначенное для взаимодействия с валом ротора высокого давления и выполненное из металлокерамоматричного материала, внутреннее кольцо, предназначенное для взаимодействия с валом ротора низкого давления и выполненное из композиционного материала, причем наружное кольцо подшипника выполнено из металлокерамоматричного материала на основе карбонитрида титана при следующем соотношении компонентов, масс. %:

титан (Ti) 40-60
углерод (С) 15-20
азот (N) остальное,

а внутреннее кольцо подшипника выполнено из металлокерамоматричного материала на основе нитрида алюминия при следующем соотношении компонентов, масс. %:

нитрид кремния (Si3N4) 20-30
нитрид бора (BN) 10-15
диселенид молибдена (MoSe2) 1-3
нитрида алюминия (AlN) остальное

Совокупность существенных признаков достаточна для решения указанной технической проблемы, поскольку выполнение наружного кольца подшипника из материала на основе карбонитрида титана, а внутреннего кольца из металлокерамоматричного материала на основе нитрида алюминия при определенных соотношениях компонентов обеспечивает повышение износостойкости и долговечности подшипника за счет обеспечения требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С.

Предложенное техническое решение поясняется следующим описанием его конструкции и работы со ссылкой на иллюстрации, где:

на фиг. 1 представлен график зависимости твердости от температуры;

на фиг. 2 представлен график зависимости интенсивности изнашивания от давления в контакте пары скольжения.

Подшипник скольжения межроторной опоры газотурбинного двигателя включает наружное и внутреннее кольца. Наружное кольцо предназначено для взаимодействия с валом ротора высокого давления и выполнено из металлокерамоматричного материала на основе карбонитрида титана при следующем соотношении компонентов, масс. %:

титан (Ti) 40-60
углерод (С) 15-20
азот (N) остальное

Внутреннее кольцо предназначено для взаимодействия с валом ротора низкого давления и выполнено из металлокерамоматричного материала на основе нитрида алюминия при следующем соотношении компонентов, масс. %:

нитрид кремния (Si3N4) 20-30
нитрид бора (BN) 10-15
диселенид молибдена (MoSe2) 1-3
нитрида алюминия (AlN) остальное

Известно, что твердость и износостойкость подшипников скольжения, выполненных их металлокерамоматричных материалов, зависит от соотношения компонентов. Уменьшение содержания титана в материале наружного кольца приводит к повышению прочности и твердости материала. Наличие в материале внутреннего кольца нитрида кремния (Si3N4) и нитрида бора (BN) приводит к повышению твердости материала, наличие диселенида молибдена (MoSe2) приводит к снижению коэффициента трения и повышению стойкости материала к истиранию. Оптимальное соотношение составляющих компонентов обеспечивает требуемый уровень микротвердости материала колец при температурах до 500°С. Поскольку нитрид алюминия (AlN) характеризуется повышенной теплопроводностью, его сочетание с диселенидом молибдена (MoSe2) обеспечивает наличие гарантированного зазора между кольцами в процессе эксплуатации, что обеспечивает повышение долговечности подшипника.

Подшипник скольжения межроторной опоры газотурбинного двигателя работает следующим образом. При вращении вала ротора высокого давления и вала ротора низкого давления во вращение вовлекаются наружное и внутреннее кольца подшипника скольжения, образующие при вращении пару трения. В зазор пары подается жидкая смазка, обеспечивающая жидкостное трение между кольцами. При вращении колец подшипника в результате трения кольца нагреваются, поэтому смазка одновременно выполняет функцию охлаждающей жидкости. Поскольку разница в коэффициентах линейного расширения материала наружного и внутреннего колец незначительная в пределах от

2,5⋅1-6

до

4,5⋅10-6/К,

конструкционный зазор между кольцами при нагревании остается постоянным. При этом с повышением температуры до 500°С микротвердость материалов в паре трения изменяется незначительно.

Для оценки свойств материала колец были проведены испытания металлокерамоматричных материалов на основе карбонитрида титана и нитрида алюминия при различных соотношениях компонентов (см. таблицу):

Полученные результаты экспериментальных исследований материалов выполненных в соответствии с указанными выше рецептурами 1-3 предлагаемого технического решения в сравнении с прототипом, представленные на графиках (см. фиг. 1 и 2) показывают, что:

- снижение твердости исследуемых покрытий, изготовленных в соответствии с предложенными рецептурами (в диапазоне рабочих температур до 500°С), составляет 6-10%;

- снижение твердости покрытия в прототипе (в диапазоне рабочих температур до 500°С), составляет более 20%;

- интенсивность изнашивания в зависимости от повышения давления в контакте в предложенном техническом решении для исследуемых покрытий, изготовленных в соответствии с рецептурами 1-3 в 1,8-2,0 раза ниже интенсивности изнашивания в аналогичных условиях для покрытия в прототипе.

При инвертировании колец подшипника, т.е. при изготовлении внутреннего кольца из металлокерамоматричного материала на основе карбонитрида титана и наружного кольца из металлокерамоматричного материала на основе нитрида алюминия, зазор остается неизменным, т.е. работа подшипника не происходит в условиях граничного трения, а температура отводимого масла не повышается. В результате износостойкость подшипника не снижается.

Таким образом, выполнение наружного и внутреннего колец подшипника скольжения межроторной опоры из металлокерамоматричных материалов соответственно на основе карбонитрида титана и нитрида алюминия при заданном соотношении компонентов обеспечивает требуемый уровень микротвердости материалов при температурах до 500°С, что позволяет повысить износостойкость подшипника и его долговечность.


Подшипник скольжения межроторной опоры
Источник поступления информации: Роспатент

Показаны записи 121-130 из 204.
11.01.2019
№219.016.ae5e

Способ изготовления составного керамического стержня для литья полых изделий

Изобретение относится к области литейного производства и может быть использовано при отливке полых лопаток газотурбинных двигателей. При изготовлении составного стержня из керамической массы изготавливают основной стержень (1) с выступами (2) на наружной поверхности и обжигают его. Из...
Тип: Изобретение
Номер охранного документа: 0002676721
Дата охранного документа: 10.01.2019
13.01.2019
№219.016.af81

Устройство формирования образцов тонких покрытий

Изобретение относится к области технической физики и может быть использовано для формирования образцов тонких покрытий, применяемых при испытании на когезионную прочность растяжением при повышенных температурах. Сущность: устройство включает по меньшей мере два кольцевых элемента, каждый из...
Тип: Изобретение
Номер охранного документа: 0002676953
Дата охранного документа: 11.01.2019
20.02.2019
№219.016.bca1

Способ определения температурных временных характеристик термоиндикаторных красок

Изобретение относится к области измерения температуры с помощью термоиндикаторных красок и может найти применение, в частности, при термометрировании узлов двигателя. Сущность: наносят термоиндикаторную краску на препарированный термопарами металлический образец симметричного сечения....
Тип: Изобретение
Номер охранного документа: 0002265196
Дата охранного документа: 27.11.2005
20.02.2019
№219.016.bcd6

Устройство для определения параметров пульсирующего потока

Изобретение относится к области газовой динамики. Устройство содержит насадок, оснащенный определителем направления потока, соединенным с блоком коррекции положения насадка относительно направления потока, блок цифрового преобразования и регистрации аналоговых сигналов, блок определения...
Тип: Изобретение
Номер охранного документа: 0002285244
Дата охранного документа: 10.10.2006
20.02.2019
№219.016.bfde

Аэродинамическая модель летательного аппарата с интегрированным воздушно-реактивным двигателем

Изобретение относится к области аэродинамических испытаний для измерения аэродинамических сил, действующих на уменьшенную в масштабе модель летательного аппарата в аэродинамической трубе в процессе экспериментального определения летно-технических и тягово-экономических характеристик летательных...
Тип: Изобретение
Номер охранного документа: 0002370744
Дата охранного документа: 20.10.2009
20.02.2019
№219.016.c1e4

Устройство поворота вектора тяги турбореактивного двухконтурного двигателя

Устройство поворота вектора тяги турбореактивного двухконтурного двигателя включает центральное тело газогенератора внутреннего контура и мотогондолу вентилятора наружного контура с кольцевым соплом на выходе, содержащее в задней части мотогондолы по периферии окна и размещенные в окнах...
Тип: Изобретение
Номер охранного документа: 0002425242
Дата охранного документа: 27.07.2011
20.02.2019
№219.016.c2ad

Инерционное устройство для остановки обоймы при испытаниях летательных аппаратов на птицестойкость

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции самолета при столкновении с птицей или другими посторонними предметами. Устройство содержит упор с центральным отверстием и...
Тип: Изобретение
Номер охранного документа: 0002451273
Дата охранного документа: 20.05.2012
20.02.2019
№219.016.c39a

Корпус камеры сгорания летательного аппарата

Изобретение относится к области ракетных или реактивных двигательных установок. Корпус камеры сгорания летательного аппарата выполнен как многослойное изделие, содержащее несущую механическую нагрузку внутреннего давления, металлическую обечайку, слой кремнеземной ткани, пропитанной...
Тип: Изобретение
Номер охранного документа: 0002430306
Дата охранного документа: 27.09.2011
23.02.2019
№219.016.c5cf

Измерительная система для определения истинного объёмного газосодержания

Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно к измерительным системам для определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе. Измерительная система включает горизонтальный цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002680417
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c60b

Способ определения истинного объёмного газосодержания

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей. Способ заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002680416
Дата охранного документа: 21.02.2019
Показаны записи 11-11 из 11.
06.06.2023
№223.018.781d

Корпус роторно-поршневого двигателя внутреннего сгорания

Изобретение относится к области двигателестроения, а именно к роторно-поршневым двигателям внутреннего сгорания, и может быть использовано для теплоизоляции корпуса двигателя. Корпус двигателя с расположенными в нем впускным и выпускным каналами содержит нанесенное на внутреннюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002738156
Дата охранного документа: 08.12.2020
+ добавить свой РИД