×
23.02.2019
219.016.c606

Результат интеллектуальной деятельности: Подшипник скольжения межроторной опоры

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного моторостроения и может быть использовано в подшипниках скольжения межроторных опор газотурбинных двигателей. Подшипник скольжения межроторной опоры включает наружное и внутреннее кольца. выполненные из металлокерамоматричного материала на основе соответственно карбонитрида титана и нитрида алюминия при заданном соотношении компонентов. Кольца расположены внутри вала роторов высокого и низкого давления. Технический результат: обеспечение требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С, что позволяет повысить износостойкость и долговечность подшипника скольжения межроторной опоры газотурбинного двигателя. 2 ил., 1 табл.

Изобретение относится к области авиационного моторостроения, а именно к межроторным опорам газотурбинных двигателей.

Решение перспективных задач в части создания самолетов с высокими показателями эффективности заставляет предусматривать все более высокие значения газодинамических параметров рабочего цикла двигателя. Возникающие нагрузки носят переменный характер по величине, интенсивности и частоте воздействия приложенных сил, поэтому подшипники опор роторов оказываются в сложных условиях, значительно сокращающих их ресурс. Использование традиционно применяемых конструкционных материалов подшипников скольжения, где используются пары трения «чугун-бронза», работоспособных при максимальной удельной нагрузке до 2,0 МПа и предельной скорости, не превышающей 1 м/с, в конструкции опор газотурбинного двигателя невозможно из-за напряженных условий эксплуатации. Расчетные значения удельной нагрузки для подшипников скольжения межроторной опоры турбины высокого давления должны составлять до 1,7 МПа при окружной скорости в зоне контакта поверхностей скольжения до 40 м/с, что значительно меньше необходимых значений параметров.

Известен подшипник скольжения межроторной опоры газотурбинного двигателя, включающий наружное и внутреннее кольцо, предназначенные для взаимодействия с валом ротора высокого давления и валом ротора низкого давления и выполненные из композиционных керамических материалов («Исследование возможности использования керамических авиационных подшипников скольжения нового поколения в конструкциях опор роторов газотурбинных двигателей», «Двигатель» №3, 2013 г., стр. 24-26). В известном техническом решении применение композиционных керамических материалов на основе карбида кремния и карбонитрида титана при изготовлении колец подшипника скольжения обеспечивает повышение эффективности работы подшипника за счет снижения энергетических потерь на трение. Недостатком известного технического решения является зависимость износостойкости пары трения от величины конструктивного зазора между кольцами, определяемого составами и свойствами материала колец, исключающего возможность возникновения граничного трения, и от действия возникающих в опоре при режимах, близких к критическим режимам работы ротора, знакопеременных изгибающих моментов. Указанный недостаток влияет на снижение надежности межроторной опоры.

Наиболее близким по технической сущности и назначению к предлагаемому изобретению является подшипник скольжения межроторной опоры газотурбинного двигателя, включающий наружное кольцо расположенное внутри вала ротора высокого давления, и внутреннее кольцо, закрепленное на валу ротора низкого давления, выполненные из композиционных керамических материалов (RU 2647021, 2018). В известном техническом решении применение композиционных керамических материалов на основе нитрида титана и дисперсно-упрочненного реакционно-спеченного карбонитрида кремния при изготовлении колец подшипника скольжения обеспечивает износостойкость подшипника за счет обеспечения конструктивного зазора в паре трения в процессе рабочего цикла. При вращении колец подшипника в процессе рабочего цикла в результате трения происходит повышение температуры колец. Недостатком известного технического решения является зависимость значений микротвердости материала на основе дисперсно-упрочненного реакционно-спеченного карбонитрида от температуры материала, повышением которой снижается микротвердость и соответственно износостойкость и долговечность подшипника.

Техническая проблема, на решение которой направлено изобретение, заключается в повышении износостойкости и долговечности подшипника скольжения межроторной опоры газотурбинного двигателя.

Технический результат, достигаемый при осуществлении предлагаемого технического решения, заключается в обеспечении требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С.

Результат, обеспечиваемый заявленным изобретением, достигается тем, что подшипник скольжения межроторной опоры включает наружное кольцо, предназначенное для взаимодействия с валом ротора высокого давления и выполненное из металлокерамоматричного материала, внутреннее кольцо, предназначенное для взаимодействия с валом ротора низкого давления и выполненное из композиционного материала, причем наружное кольцо подшипника выполнено из металлокерамоматричного материала на основе карбонитрида титана при следующем соотношении компонентов, масс. %:

титан (Ti) 40-60
углерод (С) 15-20
азот (N) остальное,

а внутреннее кольцо подшипника выполнено из металлокерамоматричного материала на основе нитрида алюминия при следующем соотношении компонентов, масс. %:

нитрид кремния (Si3N4) 20-30
нитрид бора (BN) 10-15
диселенид молибдена (MoSe2) 1-3
нитрида алюминия (AlN) остальное

Совокупность существенных признаков достаточна для решения указанной технической проблемы, поскольку выполнение наружного кольца подшипника из материала на основе карбонитрида титана, а внутреннего кольца из металлокерамоматричного материала на основе нитрида алюминия при определенных соотношениях компонентов обеспечивает повышение износостойкости и долговечности подшипника за счет обеспечения требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С.

Предложенное техническое решение поясняется следующим описанием его конструкции и работы со ссылкой на иллюстрации, где:

на фиг. 1 представлен график зависимости твердости от температуры;

на фиг. 2 представлен график зависимости интенсивности изнашивания от давления в контакте пары скольжения.

Подшипник скольжения межроторной опоры газотурбинного двигателя включает наружное и внутреннее кольца. Наружное кольцо предназначено для взаимодействия с валом ротора высокого давления и выполнено из металлокерамоматричного материала на основе карбонитрида титана при следующем соотношении компонентов, масс. %:

титан (Ti) 40-60
углерод (С) 15-20
азот (N) остальное

Внутреннее кольцо предназначено для взаимодействия с валом ротора низкого давления и выполнено из металлокерамоматричного материала на основе нитрида алюминия при следующем соотношении компонентов, масс. %:

нитрид кремния (Si3N4) 20-30
нитрид бора (BN) 10-15
диселенид молибдена (MoSe2) 1-3
нитрида алюминия (AlN) остальное

Известно, что твердость и износостойкость подшипников скольжения, выполненных их металлокерамоматричных материалов, зависит от соотношения компонентов. Уменьшение содержания титана в материале наружного кольца приводит к повышению прочности и твердости материала. Наличие в материале внутреннего кольца нитрида кремния (Si3N4) и нитрида бора (BN) приводит к повышению твердости материала, наличие диселенида молибдена (MoSe2) приводит к снижению коэффициента трения и повышению стойкости материала к истиранию. Оптимальное соотношение составляющих компонентов обеспечивает требуемый уровень микротвердости материала колец при температурах до 500°С. Поскольку нитрид алюминия (AlN) характеризуется повышенной теплопроводностью, его сочетание с диселенидом молибдена (MoSe2) обеспечивает наличие гарантированного зазора между кольцами в процессе эксплуатации, что обеспечивает повышение долговечности подшипника.

Подшипник скольжения межроторной опоры газотурбинного двигателя работает следующим образом. При вращении вала ротора высокого давления и вала ротора низкого давления во вращение вовлекаются наружное и внутреннее кольца подшипника скольжения, образующие при вращении пару трения. В зазор пары подается жидкая смазка, обеспечивающая жидкостное трение между кольцами. При вращении колец подшипника в результате трения кольца нагреваются, поэтому смазка одновременно выполняет функцию охлаждающей жидкости. Поскольку разница в коэффициентах линейного расширения материала наружного и внутреннего колец незначительная в пределах от

2,5⋅1-6

до

4,5⋅10-6/К,

конструкционный зазор между кольцами при нагревании остается постоянным. При этом с повышением температуры до 500°С микротвердость материалов в паре трения изменяется незначительно.

Для оценки свойств материала колец были проведены испытания металлокерамоматричных материалов на основе карбонитрида титана и нитрида алюминия при различных соотношениях компонентов (см. таблицу):

Полученные результаты экспериментальных исследований материалов выполненных в соответствии с указанными выше рецептурами 1-3 предлагаемого технического решения в сравнении с прототипом, представленные на графиках (см. фиг. 1 и 2) показывают, что:

- снижение твердости исследуемых покрытий, изготовленных в соответствии с предложенными рецептурами (в диапазоне рабочих температур до 500°С), составляет 6-10%;

- снижение твердости покрытия в прототипе (в диапазоне рабочих температур до 500°С), составляет более 20%;

- интенсивность изнашивания в зависимости от повышения давления в контакте в предложенном техническом решении для исследуемых покрытий, изготовленных в соответствии с рецептурами 1-3 в 1,8-2,0 раза ниже интенсивности изнашивания в аналогичных условиях для покрытия в прототипе.

При инвертировании колец подшипника, т.е. при изготовлении внутреннего кольца из металлокерамоматричного материала на основе карбонитрида титана и наружного кольца из металлокерамоматричного материала на основе нитрида алюминия, зазор остается неизменным, т.е. работа подшипника не происходит в условиях граничного трения, а температура отводимого масла не повышается. В результате износостойкость подшипника не снижается.

Таким образом, выполнение наружного и внутреннего колец подшипника скольжения межроторной опоры из металлокерамоматричных материалов соответственно на основе карбонитрида титана и нитрида алюминия при заданном соотношении компонентов обеспечивает требуемый уровень микротвердости материалов при температурах до 500°С, что позволяет повысить износостойкость подшипника и его долговечность.


Подшипник скольжения межроторной опоры
Источник поступления информации: Роспатент

Показаны записи 111-120 из 204.
27.10.2018
№218.016.977a

Способ изготовления изделий из реакционно-спеченного композиционного материала

Изобретение относится к области конструкционных материалов, а именно к способам изготовления высокотемпературных, износостойких и коррозионно-стойких изделий из реакционно-спеченного композиционного материала на основе карбида кремния, и может быть использовано в ряде отраслей промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002670819
Дата охранного документа: 25.10.2018
09.11.2018
№218.016.9b5b

Способ испытания на трещиностойкость образцов полимерных композиционных материалов

Изобретение относится к области испытаний на трещиностойкость, а именно к способам испытания на трещиностойкость образцов полимерных композиционных материалов. Сущность: размещают на контрастном фоне образец материала с предварительно выполненной на его конце трещиной, прикладывают к...
Тип: Изобретение
Номер охранного документа: 0002672035
Дата охранного документа: 08.11.2018
23.11.2018
№218.016.9fe0

Способ изготовления полого диска газотурбинного двигателя

Изобретение относится к изготовлению полого диска газотурбинного двигателя. Диск выполняют в виде единой детали методом гетерофазной лазерной металлургии путем наложения кольцевых валиков из порошкового материала слоями с произвольным перекрытием валиков по периферии с шагом 1,3-1,5 мм и...
Тип: Изобретение
Номер охранного документа: 0002672989
Дата охранного документа: 22.11.2018
05.12.2018
№218.016.a329

Способ определения форм колебаний вращающихся колес турбомашин

Изобретение относится к области испытаний деталей и узлов турбомашин, в частности к способам определения динамических характеристик рабочих колеc. Техническим результатом, достигаемым в заявленном изобретении, является повышение достоверности определения диаметральных форм колебаний...
Тип: Изобретение
Номер охранного документа: 0002673950
Дата охранного документа: 03.12.2018
07.12.2018
№218.016.a4a0

Устройство для фиксации резьбового соединения

Изобретение относится к области резьбовых соединений, а именно к устройству для фиксации резьбового соединения. Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в обеспечении реализации эффекта самоподтягивания резьбового соединения за счет...
Тип: Изобретение
Номер охранного документа: 0002674240
Дата охранного документа: 05.12.2018
12.12.2018
№218.016.a58e

Способ определения напряжений в колеблющейся лопатке

Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние...
Тип: Изобретение
Номер охранного документа: 0002674408
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a961

Устройство для фиксации болтового соединения фланцев вращающегося трубопровода

Изобретение относится к области резьбовых соединений, а именно к устройствам для фиксации болтовых соединений фланцев вращающегося трубопровода. Сущность изобретения состоит в том, что устройство для фиксации болтового соединения фланцев вращающегося трубопровода включает фиксатор положения...
Тип: Изобретение
Номер охранного документа: 0002675457
Дата охранного документа: 19.12.2018
23.12.2018
№218.016.aa4a

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из регулируемого вентилятора разделяют на поток первого контура и поток второго контура. Для формирования потока третьего контура канал третьего контура подключают через...
Тип: Изобретение
Номер охранного документа: 0002675637
Дата охранного документа: 21.12.2018
26.12.2018
№218.016.aa91

Способ изготовления диска осевой турбомашины

Изобретение относится к области двигателестроения, а именно к способам изготовления дисков для осевых турбомашин, в частности дисков высокотемпературных турбин газотурбинных двигателей. Диск турбомашины выполняют в виде единой детали методом трехмерной печати, для чего формируют ступицу и...
Тип: Изобретение
Номер охранного документа: 0002675735
Дата охранного документа: 24.12.2018
29.12.2018
№218.016.aca4

Устройство для определения температуры газовой среды в газотурбинных двигателях

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований...
Тип: Изобретение
Номер охранного документа: 0002676237
Дата охранного документа: 26.12.2018
Показаны записи 11-11 из 11.
06.06.2023
№223.018.781d

Корпус роторно-поршневого двигателя внутреннего сгорания

Изобретение относится к области двигателестроения, а именно к роторно-поршневым двигателям внутреннего сгорания, и может быть использовано для теплоизоляции корпуса двигателя. Корпус двигателя с расположенными в нем впускным и выпускным каналами содержит нанесенное на внутреннюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002738156
Дата охранного документа: 08.12.2020
+ добавить свой РИД