×
19.01.2019
219.016.b24b

Результат интеллектуальной деятельности: СПОСОБ МЕХАНОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КАТАЛИЗАТОРА РЕАКЦИЙ ГИДРОГЕНИЗАЦИИ НА ОСНОВЕ НИКЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров. Способ получения катализатора реакций гидрогенизации Ni/SiO заключается в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля, восстановлении при 450-470°С со скоростью нагрева 4°С/мин в токе водорода со скоростью 30 см/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты С при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры, при этом наносят на силикагель (носитель) оксид никеля (NiO) непосредственно в исходном сухом виде с помощью планетарной мельницы при расходе энергии 0,08-3,94 кДж/г.кат., что соответствует 20-40% от максимальной мощности и времени работы 10-240 с в массовом соотношении (NiO:SiO) 1:2,36. Техническим результатом изобретения является упрощение способа получения, удешевление процесса получения, значительное сокращение количества исходных веществ и побочных продуктов без образования вредных газов (сильных окислителей или парниковых газов) и при отсутствии стадии упаривания водных и неводных растворов. 1 ил., 2 табл.

Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров.

Известен способ механохимического получения никелевого катализатора, способ его приготовления и процесс получения ферромагнитного графитированного углерода и водорода [патент №2042425 РФ, МПК B01J 23/78, B01J 37/34, С01В 31/04, С01В 3/26. Катализатор, способ его приготовления и процесс получения ферромагнитного графитированного углерода и водорода/ Чесноков В.В., Прокудина Н.А., Буянов Р.А., Молчанов В.В.; заявитель и патентообладатель: Институт катализа СО РАН; №5065825, заяв. 1992-06-15; опубл. 27.08.1995], в котором катализатор содержит следующие компоненты, мае. NiO 70-90%, CuO 2-16%, Al(ОН)3 или Mg(OH)2 8-14%. Способ приготовления катализатора включает механохимическую активацию двойной смеси оксидов никеля и меди, а затем тройной смеси никеля и меди с гидроксидом алюминия или магния в планетарной центробежной мельнице с последующим восстановлением смеси водородом при нагревании до температуры реакции разложения метана.

Известен механохимический способ приготовления катализатора для селективного гидрирования диеновых и ацетиленовых углеводородов в олефины [патент №2087187 РФ, МПК B01J 35/06, B01J 23/74, B01J 21/18 Катализатор для селективного гидрирования и способ его получения / Молчанов В.В., Чесноков В.В., Буянов Р.А., Зайцева Н.А.; заявитель и патентообладатель: Институт катализа им. Г.К. Борескова СО РАН; №94017624; заявл. 10.05.1994]. Суть изобретения состоит в том, что смесь оксида никеля, оксида меди и гидроксида магния подвергали механохимической активации в центробежной планетарной мельнице, а далее восстанавливали и подвергали закоксованию в смеси метана с водородом при 600°С до дезактивации в отношении коксообразования. при закоксовании металлов подгруппы железа и их сплавов образуется нитевидный углерод. На концах нитей расположена частица металла или сплава.

Известен способ получения катализаторов гидрирования методами пропитки [Патент №2102145 РФ, МПК B01J 37/04. Способ получения никелевого катализатора гидрирования / Кипнис М.А., Газимзянов Н.Р., Алешин А.И., Агоронов B.C.; заявитель и патентообладатель ЗАО НПФ «Химтэк». - №96117610/04; заяв. 05.09.1996; опубл. 20.01.1998]. Сущность изобретения заключается в получении никелевого катализатора гидрирования смешением основного карбоната никеля с алюмооксидным носителем (смеси высокотемпературной и низкотемпературной форм оксида алюминия) в присутствии пептизатора водного раствора аммиака, с последующей сушкой при 100-120°С и прокаливанием при 350-500°С, измельчением, смешением с графитом и таблетированием. Это ведет к образованию газообразного аммиака и углекислого газа, в качестве отходов.

Так же известен способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя [Патент №2492160 РФ, МПК С07С 7/167, С07С 5/09, С07С 15/46, B01J 23/755, B01J 23/72, B01J 23/44. Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя / ЛЮ Юньтао, ЧЖУ Юньхуа, КУАЙ Юнь, ЧЖУ Чжиянь, ЛИ Сицинь; заявитель и патентообладатель ЧАЙНА ПЕТРОЛЕУМ ЭНД КЕМИКАЛ КОРПОРЕЙШН (CN), ШАНХАЙ РИСЕРЧ ИНСТИТЬЮТ ОФ ПЕТРОКЕМИКАЛ ТЕКНОЛОДЖИ СИНОПЕК (CN), заявка №2011129678/04,; заявл. 17.12.2009; опубл. 10.09.2013; Бюл. №25]. В этом способе при приготовлении катализатора есть следующие стадии: медленно добавляют некоторое количество водорастворимой соли никеля, например, нитрата никеля, в водный раствор разбавленной кислоты (например, азотной кислоты) и перемешивают, чтобы растворить соль никеля; затем пропитывают некоторое количество носителя, например оксида алюминия, полученным раствором в течение, например, более чем 8 часов; и затем сушат и кальцинируют. В данном способе в качестве побочного продукта выделяется ядовитый газ - диоксид азота.

Наиболее близким к настоящему патенту по сущности и техническому результату является способ получения катализатора реакций гидрогенизации, заключающийся в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля, восстановлении при 470-500°С в токе водорода со скоростью: 20-40 см3/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты C16-18 при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры [Патент №2604093 РФ, МПК B01J 23/755, 37/00. Способ получения катализатора реакций гидрогенизации / Осадчая Т.Ю., Афинеевский А.В., Прозоров Д.А.; патентообладатель: федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ); №2015143251 заяв. 09.10.2015; опубл. 10.12.2016, Бюл. №34]

Недостатками известных способов синтеза каталитических систем на основе переходных металлов методами пропитки (в том числе ранее упомянутые) являются: относительно высокая стоимость исходных компонентов, трудоемкость, в ходе синтеза образование большого количества побочных веществ (отходов), в том числе таких, как оксиды азота, которые несут высокую экологическую опасность или парниковые газы.

Техническим результатом изобретения является упрощение способа получения, удешевление процесса получения, значительное сокращение количества исходных веществ и побочных продуктов без образования вредных газов (сильных окислителей или парниковых газов), а также при отсутствии стадии упаривания водных и неводных растворов.

Указанный результат достигается тем, что в способе получения катализатора реакций гидрогенизации Ni/SiO2, заключающемся в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля, восстановлении при 450-470°С, со скоростью нагрева 4°С/мин, в токе водорода со скоростью 30 см3/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты C16-18 при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры, согласно изобретению, наносят на силикагель (носитель) оксид никеля (NiO) непосредственно в исходном сухом виде с помощью планетарной мельницы при расходе энергии 0,08-3,94 кДж/г.кат., что соответствует 20-40% от максимальной мощности и времени работы 10-240 с в соотношении (NiO:SiO2)1:2,36.

Технический результат достигается за счет уменьшения числа операций приготовления, что упрощает и удешевляет процесс, за счет исключения процесса температурного разложения солей никеля, при котором выделяются вредные газы (сильные окислители или парниковые газы), проведение процесса без использования растворов, что позволяет снизить потребление воды и исключает необходимость выпаривания влаги.

Для осуществления изобретения используют следующее оборудование:

Мельница «Активатор-2SL» с техническими характеристиками:

Скорость вращения центральной оси - 993 об/мин (макс), 904 об/мин (ср.), 828 об/мин (мин).

Скорость вращения барабанов - 1490 об/мин (макс), 1356 об/мин (ср.), 1242 об/мин (мин).

Соотношение радиусов (центрального и барабанов) - 1,5.

Радиус планетарного вращения - 52,5 мм

Внутренний радиус барабанов - 35 мм.

Объем барабанов - 220 см3.

Потребляемая мощность - 1,7 КВт, 380 В/3 фазы.

Мелющие тела:

малые мелющие тела - диаметр 5 мм, масса 0,499 г,

большие мелющие тела - диаметр 8 мм, масса 2,713 г,

Загрузка в каждом барабане мелющих тел и порошка:

малые мелющие тела - 90 шт.

большие мелющие тела - 90 шт.

Порошок - 41,369 г.

Для регулировки мощности использовали инвертор TOSVERT VF-S11 фирмы Toshiba. Были использованы следующие регулировки мощности: 20%, 30%, 40%.

Для осуществления изобретения используют следующие вещества:

1. Никель (II) окись (NiO) «ЧДА» ТУ-6-09-4125-80, поставщик ООО «Спектр-хим».

2. Диэтиловый эфир малеиновой кислоты (ДЭМК) ТУ 6-09-3932-87 «ХЧ», поставщик ООО «Кристалл-Центр», ρ=1,064 г/см3..

3. Силикагель марки Л 5/40 мкм (SiO2) «ХЧ».

4. Водород электролитический марки Б ГОСТ 3022-80.

5. Вода дистиллированная ГОСТ 6709-72.

6. Цетилстеариловый спирт, поставщик КурскХимПром ООО "КурскХимПром".

Способ осуществляют следующим образом:

Для всех примеров готовят навеску порошка массой 41,37 г простым смешением 12,32 г NiO и 29,05 г SiO2, далее эта смесь обозначена как (NiO+SiO2). Это позволяет получить катализатор состава Ni/SiO2 с w(Ni)=25%.

Пример 1.

В барабан мельницы загружают смесь (NiO+SiO2). Проводят механоактивацию при 40% от максимальной мощности на инверторе TOSVERT в течение 120с, это соответствует 1,97 кДж/г.кат. затраченной энергии.

Активацию (восстановление) катализатора проводят следующим образом. Помещают в трубчатую печь носитель (подложку) с нанесенным никелем и восстанавливают в токе водорода со скоростью 30 см3/мин при t=450°C. Подъем температуры осуществляют с 30°С до 450°С со скоростью нагрева 4°С/мин. При достижении указанной температуры охлаждают катализатор до 80°С. На этой стадии полученный катализатор Ni/SiO2 уже обладает значительной активностью, однако для долговременного хранения используют его пассивацию. Активированный катализатор вносят в атмосфере водорода в жирные одноатомные спирты C16-18 при температуре 80°С, в соотношении спирт: катализатор - 3:1 по массе. Полученную массу размешивают и затем охлаждают до комнатной температуры.

Пример 2.

Отличается от примера 1 тем, что восстанавливают при t=470°C.

Пример 3.

Отличается от примера 1 тем, что восстанавливают при t=470°C. Подъем температуры осуществляют с 30°С до 470°С со скоростью нагрева 4°С/мин., а далее перед охлаждением выдерживают 15 минут при этой температуре.

Пример 4.

В барабан мельницы загружают смесь (NiO+SiO2). Проводят механоактивацию при 40% мощности на инверторе TOSVERT в течение 30 с, это соответствует 0,49 кДж/г.кат. затраченной энергии.

Активацию (восстановление) катализатора проводят следующим образом. Помещают в трубчатую печь носитель (подложку) с нанесенным никелем и восстанавливают в токе водорода со скоростью 30 см3/мин при t=470°C. Подъем температуры осуществляют с 30°С до 470°С со скоростью нагрева 4°С/мин. При достижении указанной температуры охлаждают катализатор до 80°С. На этой стадии полученный катализатор Ni/SiO2 уже обладает значительной активностью, однако для долговременного хранения используют его пассивацию. Активированный катализатор вносят в атмосфере водорода в жирные одноатомные спирты C16-18 при температуре 100°С, в соотношении спирт: катализатор - 3:1 по массе. Полученную массу размешивают и затем охлаждают до комнатной температуры.

Пример 5.

Отличается от примера 4 тем, что проводят механоактивацию в течение 60с, это соответствует 0,98 кДж/г.кат. затраченной энергии.

Пример 6.

Отличается от примера 4 тем, что проводят механоактивацию в течение 10с, это соответствует 0,16 кДж/г.кат. затраченной энергии.

Пример 7.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 10с, это соответствует 0,12 кДж/г.кат. затраченной энергии.

Пример 8.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 240с, это соответствует 2,95 кДж/г.кат. затраченной энергии.

Пример 9.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 120с, это соответствует 1,47 кДж/г.кат. затраченной энергии.

Пример 10.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 60с, это соответствует 0,74 кДж/г.кат. затраченной энергии.

Пример 11.

Отличается от примера 4 тем, что проводят механоактивацию при 20% мощности на инверторе TOSVERT в течение 240с, это соответствует 1,97 кДж/г.кат. затраченной энергии.

Пример 12.

Отличается от примера 4 тем, что проводят механоактивацию при 20% мощности на инверторе TOSVERT в течение 120с, это соответствует 0,98 кДж/г.кат. затраченной энергии.

Пример 13.

Отличается от примера 4 тем, что проводят механоактивацию в течение 240с, это соответствует 3,94 кДж/г.кат. затраченной энергии.

Изобретение поясняется чертежом, на котором приведены кинетические кривые поглощения водорода для гидрирования малеата натрия, данный процесс взят, как пример использования катализатора. Зависимость скорости реакции гидрогенизации диэтилового эфира малеиновой кислоты от степени превращения в воде на нанесенных никелевых катализаторах Ni/SiO2, условия механохимического синтеза:

1- 120 с., 1,97 кДж/г.кат., температура восстановления 450°С;

2- 120 с., 1,97 кДж/г.кат., температура восстановления 470°С;

3- 120 с., 1,97 кДж/г.кат., температура восстановления 470°С (выдержка 15 минут);

4- 30 с., 0,49 кДж/г.кат., температура восстановления 470°С;

5- 60 с., 0,98 кДж/г.кат., температура восстановления 470°С;

6- 240 с., 3,94 кДж/г.кат., температура восстановления 470°С. Условия проведения реакции восстановления: температура 30°С, атмосферное давление, скорость вращения мешалки 3000 об./мин.

В таблице 1 приведены условия приготовления катализаторов в примерах 1-13.

В таблице 2 приведены характеристики для активности полученных по указанным примерам (1-13) катализаторов. В качестве каталитической активности принимали скорость реакции гидрогенизации малеата натрия и диэтилового эфира малеиновой кислоты в воде при температуре 30°С и атмосферном давлении водорода отнесенную к 1 грамму металла. Данные соединения были выбраны в качестве модельных так, как реакция их гидрогенизации идет в одну стадию без образования промежуточных продуктов и кинетика данных процессов хорошо изучена. Так же в таблице 2 приведено время полупревращения для указанных реакций гидрогенизации. Кинетические кривые поглощения водорода приведены на чертеже.

Предлагаемый способ позволяет получать катализатор с сопоставимыми или аналогичными характеристиками, при этом получение катализатора требует меньшего количества времени и трудозатрат. Устраняется необходимость использования водных или неводных растворов для нанесения металла на носитель. При данном способе отсутствуют выделения таких побочных продуктов, как газы - сильные окислители, или как парниковые газы. За счет снижения числа стадий приготовления, времени приготовления и устранения необходимости собирать и перерабатывать побочные продукты - происходит удешевление изготовления катализатора.

Способ механохимического получения катализатора реакций гидрогенизации на основе никеля, заключающийся в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля (NiO), восстановлении при 450-470°С со скоростью нагрева 4°С/мин в токе водорода со скоростью 30 см/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты С при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры, отличающийся тем, что оксид никеля (NiO) наносят на носитель (силикагель) непосредственно в исходном сухом виде с помощью планетарной мельницы при расходе энергии 0,08-3,94 кДж/г.кат., что соответствует 20-40% от максимальной мощности, и времени работы 10-240 с при массовом соотношении (NiO:SiO) 1:2,36.
СПОСОБ МЕХАНОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КАТАЛИЗАТОРА РЕАКЦИЙ ГИДРОГЕНИЗАЦИИ НА ОСНОВЕ НИКЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 67.
26.08.2017
№217.015.d4a5

Тетра-4-{ 4-[1-метил-1-(4-сульфофенил)этил]фенокси} -тетра-5-нитрофталоцианин кобальта

Изобретение относится к получению нового производного фталоцианина, а именно тетра-4-{4-[1-метил-1-(4-сульфофенил)этил]фенокси}тетра-5-нитрофталоцианина кобальта формулы: Вышеуказанное производное фталоцианина проявляет каталитическую активность при окислении серосодержащих органических...
Тип: Изобретение
Номер охранного документа: 0002622290
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d7da

Способ проведения поисково-спасательных работ

Изобретение относится к способам проведения поисково-спасательных работ с помощью авиационных средств. Способ проведения поисково-спасательных работ включает введение перед запуском беспилотного летательного аппарата (БПЛА) координат границ поиска, высоту полета, направление и шаг сканирования....
Тип: Изобретение
Номер охранного документа: 0002622505
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d839

Способ сушки пастообразных материалов

Изобретение относится к области сушки пастообразных материалов и может быть использовано в химической, пищевой, микробиологической и других отраслях, например, для сушки отходов. В способе сушки пастообразных материалов пастообразные материалы формируют в виде бесконечных цилиндров и укладывают...
Тип: Изобретение
Номер охранного документа: 0002622604
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.da44

Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке

Изобретение относится к химической промышленности, а именно к производству геосинтетических материалов из химических волокон (нитей), и испытанию их на определение сопротивления ударной динамической нагрузке. Сущность изобретения заключается в том, что в устройстве для определения сопротивления...
Тип: Изобретение
Номер охранного документа: 0002623839
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da68

Гомогенные катализаторы окисления диэтилдитиокарбамата натрия на основе тетра-4-(4'-карбоксифениламино)фталоцианина кобальта(ii), модифицированного нитрогруппами или фрагментами аминобензойной кислоты

Изобретение относится к гомогенным катализаторам окисления диэтилдитиокарбамата натрия на основе тетра-4-(4'-карбоксифениламино)фталоцианина кобальта(II), модифицированного нитрогруппами или фрагментами аминобензойной кислоты общей формулы: где X = NH. Изобретение позволяет получить...
Тип: Изобретение
Номер охранного документа: 0002623735
Дата охранного документа: 29.06.2017
29.12.2017
№217.015.faf3

Металлокомплексы окта-4,5-(4-сульфофенилсульфанил)фталоцианина с медью, цинком и кобальтом

Изобретение относится к металлокомплексам окта-4,5-(4-сульфофенилсульфанил)фталоцианина с медью, цинком и кобальтом общей формулы Указанные металлокомплексы обладают красящей способностью по отношению к шерстяным и шелковым волокнам. 13 ил., 8 пр.
Тип: Изобретение
Номер охранного документа: 0002640303
Дата охранного документа: 27.12.2017
20.01.2018
№218.016.0ffa

Способ измерения деформаций

Изобретение относится к контрольно-измерительным методам исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделий в машиностроении, авиастроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002633649
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1109

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение может быть использовано в мембранных и сорбционных технологиях, в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод. Для осуществления способа водные растворы, содержащие ионы тяжелых металлов, контактируют при комнатной...
Тип: Изобретение
Номер охранного документа: 0002633913
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1124

Способ определения перерасхода нитей утка при изготовлении тканых геосинтетических сеток

Изобретение относится к промышленности производства синтетических изделий и может быть использовано при изготовлении тканых геосинтетических сеток с перевивочным переплетением. В способе определения перерасхода нитей утка при изготовлении тканых геосинтетических сеток, заключающемся в...
Тип: Изобретение
Номер охранного документа: 0002633956
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.136f

Способ получения ди-н-бутоксифосфорилзамещенных порфиринатов кобальта

Изобретение относится к способу получения ди-н-бутоксифосфорилзамещенных порфиринатов кобальта. Способ включает взаимодействие металлопорфирина с фосфитом в присутствии катализатора и растворителя, нагревание реакционной смеси при перемешивании, очистку полученного продукта с использованием...
Тип: Изобретение
Номер охранного документа: 0002634481
Дата охранного документа: 31.10.2017
Показаны записи 1-6 из 6.
20.11.2014
№216.013.0932

Термопреобразователь сопротивления (варианты) и способ его изготовления

Группа изобретений относится к измерительной технике и в частности к термоизмерительным преобразователям. Термопреобразователь сопротивления содержит многослойную трубку, состоящую из внешнего металлического слоя, внутреннего диэлектрического слоя, на который намотана катушка чувствительного...
Тип: Изобретение
Номер охранного документа: 0002533755
Дата охранного документа: 20.11.2014
13.01.2017
№217.015.8a3e

Способ получения катализатора реакций гидрогенизации

Изобретение относится к способам получения и применения нанесенного катализатора на основе никеля в реакциях восстановления основных классов промышленно важных органических соединений: при получении капролактама, анилина, спиртов и жиров. В способе получения катализатора реакций гидрогенизации,...
Тип: Изобретение
Номер охранного документа: 0002604093
Дата охранного документа: 10.12.2016
10.05.2018
№218.016.4e5c

Способ удаления остаточного алюминия из скелетного никелевого катализатора

Изобретение относится к химической промышленности, к способам получения и применения скелетных катализаторов на основе никеля в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров. Способ заключается в циклической...
Тип: Изобретение
Номер охранного документа: 0002650896
Дата охранного документа: 18.04.2018
11.10.2018
№218.016.8ff2

Способ получения скелетного никелевого катализатора для гидрирования непредельных органических соединений

Изобретение относится к химической промышленности, а именно к способам получения скелетного никелевого катализатора для применения в реакциях восстановления основных классов промышленно важных органических соединений газообразным водородом. Способ заключается в том, что берут никель-алюминиевый...
Тип: Изобретение
Номер охранного документа: 0002669201
Дата охранного документа: 09.10.2018
02.10.2019
№219.017.d053

Способ получения оксида никеля

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом. Для получения оксида никеля в качестве исходного соединения используют нитрат никеля в виде кристаллогидрата Ni(NO)⋅6HO,...
Тип: Изобретение
Номер охранного документа: 0002700047
Дата охранного документа: 12.09.2019
30.05.2020
№220.018.2269

Способ механохимического синтеза никелевого катализатора гидрирования

Изобретение относится к получению нанесённого никелевого катализатора гидрогенизации механохимическим способом для восстановления органических соединений, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности. Способ включает нанесение на носитель...
Тип: Изобретение
Номер охранного документа: 0002722298
Дата охранного документа: 28.05.2020
+ добавить свой РИД