×
26.12.2018
218.016.ab89

НАНОКАТАЛИЗАТОР ИЗ МОНОДИСПЕРСНОГО ПЕРЕХОДНОГО МЕТАЛЛА ДЛЯ СИНТЕЗА ФИШЕРА-ТРОПША, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002675839
Дата охранного документа
25.12.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области нанокатализатора для синтеза Фишера-Тропша. Описан нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель, где переходный металл устойчиво диспергирован в органическом растворителе в виде монодисперсных наночастиц; переходным металлом является марганец, железо, кобальт, рутений или смесь из них; переходный металл имеет размер зерна в пределах 1-100 нм; органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин; и катализатор имеет удельную площадь поверхности в пределах 5-300 м/г, причем указанный катализатор получен способом, включающим: (1) растворение органической соли указанного переходного металла в указанном органическом растворителе, содержащем многоатомный спирт, с получением смеси; и (2) нагревание и перемешивание смеси в присутствии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин с получением указанного нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша. Технический результат – высокая каталитическая активность катализатора, при этом размер зерна активного металла является управляемым. 3 н. и 5 з.п. ф-лы, 1 табл., 4 пр., 1 ил.
Реферат Свернуть Развернуть

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[1] Изобретение относится к области катализатора для синтеза Фишера-Тропша, а более конкретно к нанокатализатору из монодисперсного переходного металла для синтеза Фишера-Тропша, способу его приготовления и его применению.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[2] Синтез Фишера-Тропша (синтез Ф-Т) является реакцией, в которой синтез-газ, приготовленный посредством газификации углеродных материалов, включающих уголь, природный газ и биомассу, переводят в целевой продукт, состоящий, главным образом, из алканов и олефинов. Целевой продукт содержит в небоьших количествах серу, азот и ароматические соединения, таким образом, целевой продукт перерабатывают для получения экологически чистого топлива. Синтез Ф-Т является идеальным способом полного использования углеродных материалов как замещение традиционного органического топлива. Поскольку импорт сырой нефти в Китае увеличивается, а требования по охране окружающей среды повышаются, синтез Ф-Т становится чрезвычайно важным для энергетической безопасности и защиты окружающей среды и привлекает внимание исследователей.

[3] Работа катализатора в синтезе Ф-Т тесно связана с химическим элементным составом. Элементы VIII группы, к примеру, железо, никель и рутений, имеют сильное каталитическое воздействие на синтез Ф-Т и используются как главные металлические компоненты катализатора. В катализаторах для промышленного синтеза Ф-Т используют, главным образом, железо или кобальт в качестве главных металлических компонентов и другие металлические элементы в качестве промоторов, с тем чтобы регулировать и улучшать рабочие характеристики катализатора.

[4] Традиционные способы приготовления катализатора для синтеза Ф-Т известны квалифицированному специалисту в области техники: катализатор на основе кобальта для синтеза Ф-Т обычно готовят способом пропитки, в котором активные компоненты металла загружают на поверхность оксидного носителя, а катализатор для синтеза Ф-Т на основе железа готовят способом соосаждения или способом плавления. Катализаторы, приготовленные с использованием разных способов, имеют, очевидно, разные рабочие характеристики для синтеза Ф-Т из-за разной микроструктуры катализаторов. Критичными для каталитических рабочих характеристик катализатора являются как пористая структура внутри частиц катализатора, так и распределение металлических частиц по размерам. Катализатор, приготовленный с использованием способа пропитки и процесса соосаждения, насыщен пористой структурой, следовательно, на каталитическое действие активного металла в порах влияет концентрация сырьевых материалов и внутренняя диффузия. Кроме того, когда активные компоненты металлических частиц заполняют поверхность носителя, удельная площадь поверхности доступного для воздействия активного компонента остается относительно маленькой, что ограничивает каталитическую производительность катализатора. В то же время исследователи указывают, что если размер металлических частиц регулируется в определенных пределах, то каталитическая активность катализатора и его селективность по продуктам при использовании в синтезе Ф-Т является наивысшей, однако из-за ограничений традиционных способов приготовления, размер металлических частиц на каталитической поверхности сложно регулировать.

[5] Ввиду приведенных выше проблем для улучшения каталитического действия исследователи обращаются к незагруженному (неимпрегнированному) катализатору из наночастиц, однако катализатор из наночастиц имеет такие недостатки, как низкая используемая температура, низкий выход продукта за один проход в единицу времени и активные компоненты с завышенными размерами. Например, в китайском патенте CN 200710099011 раскрывается способ проведения синтеза Ф-Т и специальный катализатор для синтезирования Ф-Т. В патенте смешивали соль переходного металла (железа, кобальта, никеля, рутения, родия или смеси из них) с высокомолекулярным стабилизатором (поливинилпирролидоном или (BVIMPVP)Cl) с образованием реакционной смеси и диспергировали реакционную смесь в жидкой среде. Реакционную смесь восстанавливали с использованием водорода при температуре в диапазоне 100-200°C для образования катализатора из переходного металла с наночастицами в пределах от 1 до 10 нм. Катализатор из переходного металла используется для синтеза Ф-Т при температуре в диапазоне 100-200°C. Однако концентрация наночастиц катализатора, приготовленного таким способом, относительно низкая, и наивысшая концентрация соли переходного металла в жидкой среде составляет лишь 0,014 моль/л. Кроме того, в патенте используется высокомолекулярное соединение в качестве стабилизатора, и катализатор можно использовать для синтеза Ф-Т, проводимого при температуре ниже чем 200°C; более того, выход продукта за один проход в единицу времени является относительно низким, и все это ограничивает промышленное использование катализатора. В китайском патенте CN200810055122 описан катализатор, используемый в реакторе с трехфазным пседоожиженным слоем (“slurry bed reactor”), способ приготовления катализатора и применение катализатора. В патенте нитрат переходного металла (железа, кобальта или никеля) растворяли в растворе спиртов С68 с прямой цепью и нагревали раствор при дефлегмировании, чтобы получить катализатор из переходного металла с наночастицами в пределах от 5 до 200 нм. Катализатор из переходного металла используется для синтеза Ф-Т в реакторе с трехфазным пседоожиженным слоем после его восстановления и активирования. Однако, благодаря кристаллизационной воде в нитрате, с одной стороны водородная связь на поверхности металлических частиц усиливается, и укрупнение кристаллических частиц улучшается (T. He, D. Chen, X. Jiao, Controlled Synthesis of Co3O4 Nanoparticles through Oriented Aggregation, Chem. Mater., 16 (2004) 737-743), а с другой стороны повышается температура разложения нитрата кобальта, что приводит в быстрому образованию и росту зародышей кристаллизации металла, что вместе приводит к конечным крупным агрегированным частицам (Li Zezhuang, Chen Jiangang, Wang Yuelun, Sun Yuhan, Preparation of Monodispersed Co/SiO2 Catalyst and Their Performance for Fischer-Tropsch Synthesis (J), Industrial Catalysis 2009, Vol. 17(9), 43-47).

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[6] Принимая во внимание описанные выше проблемы, одной из целей изобретения является предложение нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша, способа его приготовления и его применения. Катализатор имеет высокую каталитическую активность, а размер зерна активного металла катализатора является управляемым.

[7] Для достижения приведенной выше цели согласно варианту осуществления изобретения, предлагается нанокатализатор на основе монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель. Переходный металл стабильно диспергирован в органическом растворителе в виде монодисперсных наночастиц; переходный металл имеет размер зерна в пределах 1-100 нм; и катализатор имеет удельную площадь поверхности в пределах 5-300 м2/г.

[8] В разновидности этого варианта осуществления переходным металлом является марганец, железо, кобальт, рутений или смесь из них.

[9] В разновидности этого варианта осуществления органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин.

[10] В разновидности этого варианта осуществления размер зерна переходного металл находится в пределах от 5 до 10 нм.

[11] В другом аспекте настоящее раскрытие также предусматривает способ приготовления нанокатализатора на основе монодисперсного переходного металла для синтеза Фишера-Тропша, способ, включающий:

[12] 1) растворение органической соли переходного металла в органическом растворителе, содержащем многоатомный спирт, для получения смеси;

[13] 2) нагревание и перемешивание смеси при наличии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин для получения нанокатализатора монодисперсного переходного металла для синтеза Фишера-Тропша.

[14] В разновидности этого варианта осуществления в 1) переходным металлом является марганец, железо, кобальт, рутений или смесь из них, а органической солью является оксалатная, ацетилацетонатная или карбонильная соль металла.

[15] В разновидности этого варианта осуществления в 1) многоатомным спиртом является С318 двухатомный или трехатомный спирт, и органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин.

[16] В разновидности этого варианта осуществления в 1) молярное соотношение многоатомного спирта и органической соли переходного металла находится в пределах 1-5:1, а молярное соотношение органического растворителя и органической соли переходного металла находится в пределах 30-500:1.

[17] В классе этого варианта осуществления в 2) скорость нагрева смеси находится в пределах 1-10°C/мин, а время поддержания температуры находится в диапазоне 60-120 мин.

[18] Настоящее раскрытие дополнительно предусматривает способ синтеза Фишера-Тропа, включающий применение нанокатализатора из монодисперсного переходного металла по п.1, способ, включающий непосредственное использование катализатора для синтеза Фишера-Тропша без фильтрации, отделения, очистки, высокотемпературного обжига и активационного восстановления, и регулирование температуры реакции в диапазоне 180-300°C, давления реакции в пределах от 1 до 3 мегапаскалей, загрузочного объемного отношения подачи водорода к монооксиду углерода в пределах от 1 до 2,5 и общей объемной скорости в пределах от 0,5-15 л/час/г катализатора.

[19] Преимущества нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропа согласно вариантам осуществления изобретения обобщают как следующие:

[20] Во первых, катализатор изобретения является непропитанным (неимпрегнированным) катализатором из металлических наночастиц, металлические наночастицы могут свободно перемещаться в процессе реакции, не требуется прикрепление к поверхности носителя, тем самым увеличивая удельную площадь поверхности и улучшая каталитические свойства катализатора. Кроме того, металлические наночастицы имеют высокую концентрацию.

[21] Во вторых, размер зерна частиц активного компонента является регулируемым, таким образом размером металлических наночастиц управляют.

[22] В третьих, способ приготовления по изобретению является простым и легким в эксплуатации, экологически чистым, можно регулировать размер зерна металлических наночастиц, а активный компонент устойчиво диспергирован (распределен) в органическом растворителе в виде монодисперсных наночастиц, дисперсный растворитель используется повторно.

[23] В четвертых, металлические наночастицы катализатора имеют высокую дисперсность в реакторе с трехфазным пседоожиженным слоем, без привлечения фильтрации, отделения, очистки, высокотемпературного обжига и активационного восстановления, катализатор можно непосредственно использовать для синтеза Фишера-Тропша, и он демонстрирует превосходные каталитические свойства и селективность продукта.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[24] На Фиг. 1 представлен полученный с помощью трансмиссионного электронного микроскопа снимок нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша примера 1 по изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[25] Для дополнительной иллюстрации изобретение, эксперименты, подробно описывающие нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, способ его приготовления и его применение описаны далее совместно с чертежами. Следует отметить, что следующие примеры предназначаются для описания, а не для ограничения изобретения.

Пример 1

[26] 6 г ацетилацетоната железа(III) растворяли в 550 мл раствора 2-пирролидона (с плотностью 1,116 г/мл) с последующим добавлением 3,5 г 1,2-дигидроксидодекана, чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и воздуха до температуры 160°C со скоростью нагрева 1°C/мин. Раствор выдерживали в течение 120 мин при температуре 160°C и затем охлаждали до комнатной температуры, чтобы получить серо-черный коллоидный раствор наножелеза, который герметично закрывали, используя 250 мл жидкого парафина для использования.

[27] Приготовленный серо-черный коллоидный раствор наножелеза вместе с жидким парафином немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 260°C, загрузочное объемное отношение водорода и монооксида углерода составляло 1,2, объемная скорость газа составляла 13,7 л/ч/г катализатора (скорость течения газа составляла 13 л/ч) и давление реакции составляло 2 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1, при этом микроструктура катализатора показана на Фиг.1.

Пример 2

[28] 2,6 г оксалата кобальта(II) и 0,01 г нитрозилнитрата рутения(III) растворяли в 250 мл раствора дибензилового эфира, (с плотностью 1,04 г/мл) с последующим добавлением 10 г 1,2-гексадекандиола, чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и газа аргона до температуры 250°C со скоростью нагрева 10°C/мин. Раствор выдерживали в течение 80 мин при температуре 250°C и затем охлаждали до комнатной температуры, чтобы получить темно-фиолетовый коллоидный раствор нанокобальта, который герметично закрывали, используя 250 мл жидкого парафина для использования.

[29] Приготовленный темно-фиолетовый коллоидный раствор нанокобальта вместе с жидким парафином немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 180°C, загрузочное отношение водорода и монооксида углерода составляло 2,4, объемная скорость газа составляла 4,8 л/ч/г катализатора (скорость течения газа составляла 5 л/ч) и давление реакции составляло 3 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1.

Пример 3

[30] 4 г ацетилацетоната железа(III) и 2 г ацетилацетоната кобальта(II) растворяли в 450 мл раствора бензилового спирта, (с плотностью 1,04 г/мл) с последующим добавлением 9 г 1,2,4-бутантриола, чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и воздуха до температуры 200°C со скоростью нагрева 5°C/мин. Раствор выдерживали в течение 60 мин при температуре 200°C и затем охлаждали до комнатной температуры, чтобы получить темно-серый коллоидный раствор наноферокобальта, который герметично закрывали, используя 250 мл жидкого парафина для использования.

[31] Приготовленный темно-серый коллоидный раствор наноферокобальта вместе с жидким парафином немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 200°C, загрузочное отношение водорода и монооксида углерода составляло 2, объемная скорость газа составляла 7,3 л/ч/г катализатора (скорость течения газа составляла 8 л/ч) и давление реакции составляло 1 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1.

Пример 4

[32] 3,1 г пентакарбонила железа и 2,6 г декакарбонилдимарганца растворяли в 250 мл жидкого парафина, (с плотностью 0,87 г/мл) с последующим добавлением 5 г 1,2,8-октантриола чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и азота до температуры 235°C со скоростью нагрева 8°C/мин. Раствор выдерживали в течение 100 мин при температуре 235 °C и затем охлаждали до комнатной температуры, чтобы получить темно-серый коллоидный наножелезомарганцевый раствор, который герметично закрывали для использования.

[33] Приготовленный темно-серый коллоидный наножелезомарганцевый раствор немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 240°C, загрузочное объемное отношение водорода и монооксида углерода было 1,8, объемная скорость газа составляла 0,8 л/ч/г катализатора (скорость течения газа составляла 1 л/ч) и давление реакции составляло 2 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1.

Таблица 1

Параметры Катализаторы по изобретению
Пример 1 Пример 2 Пример 3 Пример 4
Физико-химические свойства Средний размер зерна металлического кристалла (нм) 5,3 47,0 18,7 83,3
Удельная площадь поверхности катализаторов (м2/г) 288,3 17,4 54,1 8,6
Индекс оценки Температура реакции (°C) 260 180 200 240
Давление реакции (МПа) 2 3 1 2
Загрузочное объемное отношение водорода и монооксида углерода 1,2 2,4 2 1,8
Объемная скорость (л/ч/г катализатора) 13,7 4,8 7,3 0,8
Каталитические свойства Конверсия CO (%) 73,2 26,7 33,1 32,8
Селективность по метану (моль.%) 3,2 7,7 6,1 2,8
Селективность по диоксиду углерода (моль.%) 21,4 0,5 4,2 26,4
Селективность по C2-C4 углеводородам (моль./%) 23,6 16,3 19 22,9
Селективность по C5+ углеводородам (моль./%) 51,8 75,5 70,7 47,9
Данные в таблице были получены с помощью статистического анализа изображений, полученных с помощью трансмиссионного электронного микроскопа

[34] На основании физико-химических свойств и каталитических свойств катализатора, показанных в Таблице 1, с помощью способа получения, раскрытого в настоящем описании, можно быстро изготовить высокоактивный катализатор с металлическими частицами наноразмеров с разными размерами зерна. Как правило, чем меньше размер зерна катализатора, тем больше активная удельная площадь поверхности и выше каталитическая активность. Однако стабильность катализатора будет снижаться. Нанометаллический катализатор с размером зерна 5-20 нм демонстрирует более универсальные свойства. По сравнению с традиционными промышленными катализаторами, катализатор по изобретению демонстрирует лучшую каталитическую активность, более низкую селективность по метану, более высокую селективность для C2-C4 углеводородов, таким образом, катализатор по изобретению имеет лучшие перспективы использования.


НАНОКАТАЛИЗАТОР ИЗ МОНОДИСПЕРСНОГО ПЕРЕХОДНОГО МЕТАЛЛА ДЛЯ СИНТЕЗА ФИШЕРА-ТРОПША, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 34.
10.06.2014
№216.012.d1a6

Технология и установка для получения синтез-газа из биомассы путем пиролиза

Изобретение может быть использовано в химической промышленности. Для получения синтез-газа из биомассы проводят предварительную обработку биомассы, включающую измельчение биомассы до получения частиц размером 1-6 мм и высушивание сырья до влажности 10-20 вес.%. Затем осуществляют пиролиз...
Тип: Изобретение
Номер охранного документа: 0002519441
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.e923

Способ и система получения синтез-газа из биомассы карбонизацией

Изобретение может быть использовано в химической промышленности. Для получения синтез-газа из биомассы карбонизацией проводят предварительную сушку и обезвоживание исходной биомассы. Затем проводят низкотемпературную карбонизацию при атмосферном давлении и изоляции от кислорода при температуре...
Тип: Изобретение
Номер охранного документа: 0002525491
Дата охранного документа: 20.08.2014
20.01.2016
№216.013.a19e

Микроволновой плазменный газификатор биомассы с перемещающимся потоком и способ газификации

Изобретение относится к газификатору биомассы с газификацией в перемещающемся потоке и способу газификации с использованием газификатора для получения синтез-газа из биотоплива в присутствии СВЧ-возбужденной плазмы. Газификатор содержит корпус печи, расположенный вертикально и содержащий впуск...
Тип: Изобретение
Номер охранного документа: 0002573016
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2bbb

Комплексный способ использования биомассы, содержащей аморфный диоксид кремния

Изобретение относится к утилизации биомассы, содержащей аморфный диоксид кремния. Способ получения аморфного кварца из рисовой шелухи, содержащей аморфный кварц, включает промывку рисовой шелухи водой, сушку, пиролиз в анаэробных условиях при 600-1000 градусах Цельсия, сбор пиролизных газов....
Тип: Изобретение
Номер охранного документа: 0002579447
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e8e

Способ очистки синтез-газа из биомассы при отрицательном давлении для получения нефтепродуктов и конфигурация его системы

Предложен способ очистки синтез-газа из биомассы при отрицательном давлении для получения нефтепродуктов и его система. В данном способе высокотемпературный синтез-газ, извлеченный из газификатора, поступает в водоохлаждаемый башенный охладитель по водоохлаждаемой трубе и газ частично...
Тип: Изобретение
Номер охранного документа: 0002580740
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ea2

Способ извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением

Изобретение относится к извлечению рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений. Способ включает его сушку, прокаливание, охлаждение и измельчение в черный порошок, содержащий оксид рутения. Помещение его в реактор с псевдоожиженным слоем, введение водорода...
Тип: Изобретение
Номер охранного документа: 0002580580
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3095

Способ получения кристаллов нитрата кобальта высокой чистоты из отработанных катализаторов сo/sio

Изобретение может быть использовано в химической промышленности. Для получения кристаллов нитрата кобальта высокой чистоты отработанные катализаторы Co/SiO кальцинируют на воздухе, охлаждают и измельчают в порошок. Указанный порошок вводят в реактор с псевдоожиженным слоем для восстановления в...
Тип: Изобретение
Номер охранного документа: 0002580744
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3a44

Участковый способ газификации биомассы при высокой температуре и атмосферном давлении

Изобретение относится к химической промышленности и охране окружающей среды. Способ включает предварительную обработку и хранение биомассы, газификацию биомассы в газификаторе, охлаждение, промывку и удаление пыли из сырого газа газификации, хранение свежего газа. В газификаторе используют...
Тип: Изобретение
Номер охранного документа: 0002583269
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4b94

Способ синтеза фишера-тропша и способ применения отработанных газов

Изобретение относится к способу синтеза Фишера-Тропша. Способ синтеза Фишера-Тропша и рециркулирования отработанных газов из этого синтеза содержит:1) транспортировку произведенного газификацией биомассы сырого синтез-газа на установку синтеза Фишера-Тропша для синтеза Фишера-Тропша в...
Тип: Изобретение
Номер охранного документа: 0002594723
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4eb5

Макромолекулярный полимерный материал высокой емкости для хранения водорода и способ его получения

Изобретение относится к энергетическому веществу высокомолекулярного материала для хранения водорода, более конкретно к полимерному материалу высокой емкости для хранения водорода и способу его получения. Материал включает в качестве основной цепи линейный высокомолекулярный полимер и...
Тип: Изобретение
Номер охранного документа: 0002595667
Дата охранного документа: 27.08.2016
Показаны записи 1-10 из 33.
10.05.2014
№216.012.c196

Способ и устройство для пиролиза и газификации биомассы с использованием двух взаимно соединенных печей

Изобретение относится к технологии преобразования горючих материалов в чистый и высокоэффективный синтетический газ и, более конкретно, к способу и системе для пиролиза и газификации биомассы с использованием двух взаимно соединенных печей. В способе используют твердые частицы с высокой...
Тип: Изобретение
Номер охранного документа: 0002515307
Дата охранного документа: 10.05.2014
Тип: Изобретение
Номер охранного документа: 0002526387
Дата охранного документа: 20.08.2014
20.09.2014
№216.012.f627

Способ и устройство для непрямой газификации биомассы с использованием водяного пара

Изобретение относится к химической промышленности и может быть использовано для получения синтетического газа. Измельченную биомассу подают в газификатор (6) с одновременной подачей азота (4) и высокотемпературного перегретого водяного пара. Биомассу подвергают осушке, удалению летучих веществ,...
Тип: Изобретение
Номер охранного документа: 0002528848
Дата охранного документа: 20.09.2014
10.11.2015
№216.013.8cb6

Способ использования промышленного топочного газа для удаления ионов металлов из оболочки рисовых зерен

Изобретение относится к утилизации оболочки рисовых зерен, а именно к способу удаления ионов металлов из оболочки рисовых зерен, используя промышленный топочный газ. На дне заполненного водой реакционного бака расположено устройство для дисперсии газа, применяемое для подачи промышленного...
Тип: Изобретение
Номер охранного документа: 0002567629
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a19e

Микроволновой плазменный газификатор биомассы с перемещающимся потоком и способ газификации

Изобретение относится к газификатору биомассы с газификацией в перемещающемся потоке и способу газификации с использованием газификатора для получения синтез-газа из биотоплива в присутствии СВЧ-возбужденной плазмы. Газификатор содержит корпус печи, расположенный вертикально и содержащий впуск...
Тип: Изобретение
Номер охранного документа: 0002573016
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.c18c

Способ модификации поверхности носителя из оксида алюминия

Изобретение относится к способу модификации поверхности носителя из оксида алюминия, включающему: 1) растворение растворимого твердого продукта в деионизованной воде и получение водного раствора твердого продукта; 2) импрегнирование носителя из оксида алюминия в водном растворе твердого...
Тип: Изобретение
Номер охранного документа: 0002576618
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.2f72

Способ получения твердого нитрозилнитрата рутения с использованием отработанного катализатора, содержащего рутений

Изобретение относится к способу рециклирования металла платиновой группы. Получение твердого нитрозилнитрата рутения включает несколько стадий. Осуществляют сушку, прокаливание в течение 2-4 ч при температуре 300-500°С отработанного катализатора, содержащего рутений, и охлаждение до комнатной...
Тип: Изобретение
Номер охранного документа: 0002580414
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3a84

Способ и система эффективной парогазовой когенерации, основанные на газификации и метанировании биомассы

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку...
Тип: Изобретение
Номер охранного документа: 0002583785
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4b94

Способ синтеза фишера-тропша и способ применения отработанных газов

Изобретение относится к способу синтеза Фишера-Тропша. Способ синтеза Фишера-Тропша и рециркулирования отработанных газов из этого синтеза содержит:1) транспортировку произведенного газификацией биомассы сырого синтез-газа на установку синтеза Фишера-Тропша для синтеза Фишера-Тропша в...
Тип: Изобретение
Номер охранного документа: 0002594723
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4eb5

Макромолекулярный полимерный материал высокой емкости для хранения водорода и способ его получения

Изобретение относится к энергетическому веществу высокомолекулярного материала для хранения водорода, более конкретно к полимерному материалу высокой емкости для хранения водорода и способу его получения. Материал включает в качестве основной цепи линейный высокомолекулярный полимер и...
Тип: Изобретение
Номер охранного документа: 0002595667
Дата охранного документа: 27.08.2016
+ добавить свой РИД