×
06.12.2018
218.016.a444

Результат интеллектуальной деятельности: Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения, смесительной головкой, инициатором, реактивным соплом и измерительной аппаратурой. Отличительными особенностями заявленного ЖРД является то, что смесительная головка выполнен в виде кольцевой щели в огневом днище для подачи окислителя, по обе стороны от которой под острым углом расположены форсунки подачи горючего. Другим отличием от известных решений является то, что корпус двигателя и камеры выполнен двухслойным, внутренний слой из прочного сплава, а внешний из высокотеплопроводного сплава. Изобретение обеспечивает повышение максимального рабочего давления. 8 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к стендовым ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина.

Предшествующий уровень техники

На сегодняшний день известна основная схема организации детонационного горения: в детонационных волнах, непрерывно циркулирующих в тангенциальном направлении поперек кольцевой камеры сгорания (спиновая детонация). Однако до сих пор нет экспериментальных данных, подтверждающих эффективность этого способа. Прямого сравнения измеренных тяговых характеристик реактивных двигателей с импульсной детонацией и с непрерывным горением не производили из-за того, что испытания длились не более одной секунды.

Проведенные патентные исследования по ЖРД со спиновым детонационным горением выявили три иностранных изобретений и одно Российское техническое решение, которые относятся к рассматриваемой теме.

Так, например, в изобретении US №3240010, 1966 г. детонационная камера сгорания образована между кольцевой смесительной головкой и заглушкой, вставленной в корпус двигателя. Кольцевая камера сгорания содержит смесительную головку, в которой выполнены две пары кольцевых струйных форсунок. Двигатель также содержит инициатор детонации, через заслонку подает топливную смесь в кольцевую камеру сгорания.

В изобретении US №3336754, 1967 г. корпус двигателя выполнен в виде кольцевой или эллипсообразной формы, который с одной стороны закрыт диском, а с другой закрыт кольцевой оболочкой, в которой выполнена кольцевая камера сгорания, образованная двумя кольцевыми вкладышами, в которых выполнены струйные форсунки окислителя и горючего. Выход продуктов сгорания из той кольцевой камеры создает тягу двигателя. В кольцевой камере создается непрерывная детонационная волна за счет ввода продуктов сгорания из инициатора детонации.

Известен стендовый ЖРД со спиновым детонационным режимом горения (патент US №8544280, 01.10.2013 г. МПК F02K 5/02 - 7/02), включающий в себя кольцевую камеру сгорания, в которой с одной стороны присоединена смесительная головка, а с другой - реактивное сопло. Кольцевая камера сгорания образована двумя соосными цилиндрами с образованием кольцевого зазора между ними. Смесительная головка состоит из кольцевого канала, через который со стороны входа двигателя подается горючее, и элемента, обеспечивающего закручивание потока газообразного окислителя - крыльчатка, вентилятора или лопаточное устройство. Между кольцевой камерой сгорания и смесительной головкой установлено кольцо, сужающее зазор между цилиндрами таким образом, чтобы предотвратить проскок детонационной волны из кольцевой камеры сгорания в смесительную камеру при работе двигателя. Реактивное сопло образуется коническим центрирующим телом, присоединенным к другому торцу внешнего цилиндра. Кольцевая камера сгорания имеет каналы, через которые осуществляется замер давления и температуры топливной смеси внутри камеры сгорания, и канал для ввода электрода для зажигания смеси.

Известен также Российский стендовый ракетный двигатель (Доклады Академии Наук, 2014 г., том 459, №6, с. 711-716, «Экспериментальное доказательство энергоэффективности термодинамического цикла Зельдовича», авт.Фролов С.М. и др.), включающий в себя кольцевую камеру сгорания, к которой с одной стороны присоединена смесительная головка, а с другой - реактивное сопло. Кольцевая камера сгорания образована двумя соосными цилиндрами с образованием кольцевого зазора между ними. Смесительная головка состоит из тонкого диска с заостренной кромкой, присоединенного к торцу внутреннего цилиндра камеры сгорания, так, что между кромкой и внешней стенкой камеры сгорания был кольцевой зазор шириной 1 мм, и 72 радиальных мелких отверстий во внешней стенке камеры сгорания, расположенных в одном поперечном сечении на осевом расстоянии 0,5 мм вниз по течению. Кислород попадает в камеру сгорания в осевом направлении через кольцевой зазор смесительной головки, а водород через указанные радиальные отверстия. Реактивное сопло образовано коническим центральным телом с углом при вершине 50°, присоединенным к другому торцу внутреннего цилиндра. Вблизи выходного сечения внешнего цилиндра с зазором расположен электрод, обеспечивающий зажигание топливной смеси. Ввиду больших тепловых нагрузок корпус камеры сгорания охлаждается водой и изготовлен из меди. Прототип.

Однако известное техническое решение не обеспечивает требуемого ресурса работы камеры сгорания при давлении более 2 кгс/см2 и продолжительности огневого испытания более 2 сек.

Раскрытие изобретения

Задача изобретения состоит в создании ЖРД, работающего в режиме непрерывной спиновой детонации при достаточно высоких давлениях в камере сгорания (от 16 кгс/см2 и более).

Эта задача решена за счет того, что в стендовом ЖРД с непрерывной спиновой детонацией, включающем в себя кольцевую камеру сгорания, к которой с одной стороны присоединена смесительная головка, а с другой - реактивное сопло, кольцевая камера сгорания образована двумя соосными цилиндрами с образованием кольцевого зазора между ними,

- смесительная головка установлена вдоль оси двигателя и выполнена из кольцевого огневого днища, в котором по середине выполнена кольцевая щелевая форсунка подвода окислителя, по обе стороны от которой выполнены радиальные струйные форсунки подачи горючего, оси которых направлены под острым углом к щелевой форсунке, а выход из смесительной головки соединен с кольцевой детонационной камерой;

- наружный корпус кольцевой камеры состоит из наружной силовой стенки, выполненной из высокопрочного сплава и внутренней оребренной стенки, выполненной из высокотеплопроводного сплава, соединенных между собой пайкой;

- в корпусе кольцевой камеры выполнены три отверстия, герметично проходящие через обе его стенки, одно для подвода горючей смеси из инициатора детонационного горения в кольцевую камеру детонационного горения, другие два для регистрации давления в кольцевой камере;

- внутренний корпус двигателя состоит из наружной гладкой стенки, выполненной из высокотеплопроводного сплава, внутренней оребренной стенки - из прочного теплопроводного сплава, соединенных между собой пайкой.

Другими отличиями является то, что:

- что инициатор детонационного горения выполнен в виде камеры, имеющей штуцера подвода окислителя и горючего и выводной канал подачи продуктов сгорания в кольцевую камеру, а также свечу зажигания;

- значение острых углов, по которым наклонены оси стройных форсунок, лежат в пределах 40°-50°;

- наружная силовая оболочка наружного корпуса выполнена из сплава ВНС-16, а внутренняя огневая стенка выполнена из меди или медного сплава БрХ08;

- наружная оболочка внутреннего корпуса выполнена из меди или медного сплава БрХ08, а внутренняя оболочка этого корпуса выполнена из сплава 273;

- корпус инициатора детонационного горения выполнен из стали ЭП-202;

- окислитель представляет собой воздух;

- окислитель представляет собой газообразный кислород;

- горючее представляет собой жидкий керосин.

Перечень чертежей

На фиг. 1 представлено продольное сечение предлагаемого двигателя; на фиг. 2 представлен фрагмент сечения смесительной головки.

Описание изобретения

Двигатель включает в себя (фиг. 1) смесительную головку 1, наружный корпус 2, внутренний корпус 3, инициатор детонации 4, магистраль подвода окислителя 5, магистраль подвода горючего 6, магистраль подвода охлаждающей жидкости в наружный корпус 7, магистраль отвода охлаждающей жидкости 8, магистраль подвода охлаждающей жидкости во внутренний корпус 9, магистраль отвода охлаждающей жидкости из внутреннего корпуса 10 и узел крепления 11.

Камера (фиг. 1) состоит из камеры сгорания 12 и сопла 13.

Камера сгорания представляет собой кольцевой канал, образованный наружным и внутренним корпусами 2.

Сопло представляет собой профилированный контур, образованный наружным и внутренним корпусами.

Смесительная головка 1 (фиг. 2) состоит из огневого днища 14, в котором выполнены кольцевой канал 15 и множество отверстий 16 с обеих сторон кольцевого канала щелевой форсунки, направленных под острым углом 40…50° в сторону кольцевого канала, и корпуса 17, выполненного из высокопрочного материала.

Наружный корпус 2 состоит из наружной оболочки 18, выполненной из высокопрочного сплава, например, ВНС-16 и внутренней оребренной стенки 19, выполненной из высокотеплопроводного сплава, например, меди или медного сплава БрХ08, соединенных между собой методом пайки. В корпусе выполнены три отверстия, проходящие через обе стенки, 20 - для подачи горючей смеси из инициатора в камеру сгорания и 21 - для двух датчиков давления, регистрирующих процесс и величины давления в камере сгорания 12.

Внутренний корпус 3 состоит из гладкой оболочки 23, выполненной из высокотеплопроводного сплава, например, из меди или медного сплава БрХ08, и оребренной оболочки 22, выполненной из прочного теплопроводного сплава, например, сплава 273, соединенных между собой методом пайки.

Инициатор детонационного горения 4 состоит из камеры сгорания 24, двух штуцеров подвода горючего 25, двух штуцеров подвода окислителя 26, канала подвода продуктов сгорания 27 в камеру сгорания демонстрационного образца и свечи зажигания 28. Корпус камеры сгорания инициатора 29 выполнен из стали ЭП-202 неохлаждаемым; вблизи торца свечи 28 выполнены перпендикулярно оси камеры два отверстия 30 для впрыска горючего и два отверстия для впрыска окислителя.

Магистрали подвода компонентов топлива, подвода и отвода охлаждающей жидкости, например, воды, выполнены таким образом, что соединение со стендовыми магистралями выполнены разъемными, при этом подвод и отвод охлаждающей жидкости для внутреннего корпуса выполнены в виде двух коаксиально расположенных труб.

Узел крепления 11 представляет собой диск, в котором выполнены шесть отверстий, используемых для крепления к стендовой раме.

Конструктивное исполнение трактов охлаждения камеры сгорания в сочетании с использованием высокотеплопроводных и высокопрочных сплавов позволяет обеспечить работоспособность камеры сгорания при повышенных значениях энергетических характеристик двигателя по сравнению с известными. Представленная схема смесеобразования позволяет сократить период смешения компонентов, что способствует возникновению устойчивого горения с детонационными волнами.

Работа двигателя

Вначале подается жидкость в охлаждающие тракты наружного 2 и внутреннего 3 корпусов.

Для охлаждения наружного корпуса вода через штуцеры 7 и коллектор 34 поступает в охлаждающий тракт и, пройдя его, через коллектор 35 и штуцеры 8 отводится в стендовые емкости.

Для охлаждения внутреннего корпуса вода через четыре штуцера 9, тракт 36 и отверстия 37 поступает в охлаждающий тракт, и пройдя его, через тракты 38, 39 и четыре штуцера 10 отводится в стендовые емкости.

Газообразный кислород (воздух) с температурой окружающей среды из стендовой магистрали поступает через четыре штуцера 5 в коллектор 32, из которого через кольцевую щель 15 (смотри фиг. 2), поступает в кольцевую камеру сгорания 12; одновременно кислород через два штуцера 26 поступает в камеру сгорания 24 инициатора.

Керосин через два штуцера 6 поступает в коллектор 33 и далее через отверстия 16 (смотри фиг. 2) диаметром 0,35 мм впрыскивается в кольцевую камеру сгорания 12, где происходит смешение с поступившем кислородом; одновременно керосин через два штуцера 25 поступает в камеру сгорания инициатора.

Для поджига смеси кислорода с керосином в инициаторе применяется свеча 28.

Кислород впрыскивается в камеру сгорания 24 инициатора через 2 отверстия, керосин - впрыскивается через 2 отверстия перпендикулярно оси камеры инициатора, где происходит смешение поступивших компонентов.

Для поджига смеси в камере 24 инициатора используется специальная электрическая свеча.

Продукты сгорания из инициатора через отверстие 20 поступают в кольцевую камеру сгорания 12 и воспламеняют находящуюся там смесь кислорода с керосином и, соответственно, инициируют спиновую детонационную волну. После возникновения детонационной волны, расход керосина через инициатор отключается, через инициатор продолжает поступать в кольцевую камеру сгорания 12 только кислород.

Выполнение кольцевой камеры сгорания из двух коаксиально расположенных достаточно прочных охлаждаемых корпусов позволяет поднять давление продуктов сгорания в камере до 16 кгс/см2 и выше и увеличить продолжительность огневого испытания до 30 секунд и более.

Выполнение смесительной головки в виде кольцевого огневого днища с выполнением в нем кольцевой щелевой форсунки подвода окислителя, по обе стороны от которой выполнены радиальные струйные форсунки подачи горючего, позволяет получить требуемое смешение компонентов в непосредственной близости у огневого днища, что обеспечивает "плавность" запуска двигателя.

Промышленное применение

Предлагаемая конструкция двигателя позволяет проводить отработку процесса горения с детонационными волнами в широком диапазоне параметров работы двигателя с последующим использованием результатов отработки для создания промышленных образцов.


Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией
Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией
Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией
Источник поступления информации: Роспатент

Показаны записи 51-60 из 174.
29.12.2018
№218.016.ac8a

Способ изготовления полупроводниковых лазеров

Способ изготовления полупроводниковых лазеров содержит этапы, на которых расщепляют лазерную гетероструктуру на линейки полупроводниковых лазеров во внешней атмосфере, обеспечивая грани резонатора, напыляют на внутреннюю поверхность рабочей вакуумной камеры слой алюминия толщиной не менее 50...
Тип: Изобретение
Номер охранного документа: 0002676230
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acdd

Способ изготовления импульсного фотодетектора

Изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs. Способ изготовления мощного импульсного фотодетектора, работающего в фотовольтаическом режиме (с нулевым напряжением смещения), на основе GaAs включает последовательное...
Тип: Изобретение
Номер охранного документа: 0002676221
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acf3

Способ изготовления свч фотодетектора

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании многослойной структуры из системы чередующихся слоев AlGaAs...
Тип: Изобретение
Номер охранного документа: 0002676185
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acfa

Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной...
Тип: Изобретение
Номер охранного документа: 0002676188
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
23.02.2019
№219.016.c6dd

Способ получения термостойких сополиэфиркетонов с улучшенными физико-механическими характеристиками

Настоящее изобретение относится к способу получения сополиэфиркетонов с высокой термостойкостью и повышенными физико-механическими характеристиками на основе 4,4'-дигидроксибензофенона, 4,4'-дифторбензофенона, карбоната калия в качестве щелочного агента, характеризующемуся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002680524
Дата охранного документа: 22.02.2019
26.02.2019
№219.016.c81c

Способ изготовления чувствительного элемента электроакустического преобразователя на основе пьезоактивной пленки из поливинилиденфторида (пвдф) и устройство для склейки чувствительного элемента

Изобретение относится к области изготовления электроакустических преобразователей. Способ изготовления чувствительного элемента на основе пьезоактивной пленки ПВДФ с токопроводящим покрытием включает нанесение на поверхность двух пьезоактивных пленок липкого слоя эпоксидной клеевой композиции,...
Тип: Изобретение
Номер охранного документа: 0002680670
Дата охранного документа: 25.02.2019
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
14.03.2019
№219.016.df4d

Арифметико-логическое устройство и способ преобразования данных с использованием такого устройства

Изобретение относится к области вычислительной техники. Технический результат заключается в увеличении производительности устройства при решении задач дискретной математики. Устройство включает в себя три входа данных, вход кода операций, выход данных, блок циклического сдвига на 8, 16, 24...
Тип: Изобретение
Номер охранного документа: 0002681702
Дата охранного документа: 12.03.2019
Показаны записи 21-26 из 26.
09.06.2019
№219.017.7ac9

Способ подготовки под пайку поверхности детали из высокопрочной стали, легированной ванадием, молибденом и вольфрамом

Изобретение может быть использовано при пайке сборочных единиц, состоящих из тонкостенных деталей из высокопрочных сталей, в частности, в авиационной и космической технике. Деталь нагревают при температуре от 900°С до 1000°С в течение от 3 до 8 минут. Проводят последующее разрыхление...
Тип: Изобретение
Номер охранного документа: 0002355527
Дата охранного документа: 20.05.2009
19.06.2019
№219.017.8bf9

Способ сжигания твердого топлива и устройство для его осуществления

Изобретение относится к области энергетики. Способ сжигания твердого топлива включает тангенциальный ввод окислителя, подачу твердого топлива и удаление продуктов сгорания, сжигание производят в детонационной волне путем создания непрерывно обновляемого детонационно-способного слоя смеси...
Тип: Изобретение
Номер охранного документа: 0002468292
Дата охранного документа: 27.11.2012
10.07.2019
№219.017.aead

Способ изготовления сварно-паяной конструкции крупногабаритного сопла камеры жидкостного ракетного двигателя

Изобретение относится к ракетной технике, к способу изготовления сопла камеры сгорания жидкостного ракетного двигателя. Способ изготовления сварно-паяной конструкции крупногабаритного сопла камеры жидкостного ракетного двигателя, состоящего из соединенных между собой стальных внутренней и...
Тип: Изобретение
Номер охранного документа: 0002323363
Дата охранного документа: 27.04.2008
11.03.2020
№220.018.0ae6

Способ формирования контролируемого сигнала для цифровой защиты от замыканий на землю при перемежающемся дуговом замыкании

Использование: в области электротехники для применения в измерительном тракте защит от замыканий на землю. Технический результат - повышение надежности выявления перемежающегося дугового замыкания без повышения частоты дискретизации тракта АЦП. Способ формирования контролируемого сигнала для...
Тип: Изобретение
Номер охранного документа: 0002716235
Дата охранного документа: 10.03.2020
02.06.2023
№223.018.757d

Способ трехфазного автоматического повторного включения лэп с шунтирующими реакторами

Использование: в области электротехники. Технический результат - снижение уровня коммутационных перенапряжений в цикле трехфазного автоматического повторного включения. Согласно способу измерения фазных напряжений со стороны шин системы и со стороны ЛЭП преобразуют в одноименные цифровые...
Тип: Изобретение
Номер охранного документа: 0002761971
Дата охранного документа: 14.12.2021
16.06.2023
№223.018.7c5d

Способ коррекции математической модели жидкостного ракетного двигателя

Изобретение относится к ракетно-космической области, в частности к жидкостным ракетным двигателям (ЖРД), и предназначено для построения математической модели конкретного экземпляра двигателя, применяемой при повторных огневых испытаниях. Способ основан на использовании текущих измеренных в...
Тип: Изобретение
Номер охранного документа: 0002749497
Дата охранного документа: 11.06.2021
+ добавить свой РИД