×
06.12.2018
218.016.a3d4

Результат интеллектуальной деятельности: СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ

Вид РИД

Изобретение

№ охранного документа
0002674089
Дата охранного документа
04.12.2018
Аннотация: Изобретение относится к энергетике. Способ форсирования газотурбинной установки подачей воды в пространство между компрессорами низкого и высокого давлений в количествах, при которых вода превращается в пар, заключается в формировании внутреннего термодинамического цикла, который снимает температурные ограничения в газотурбинной установке. Изобретение позволяет повысить удельную мощность газотурбинной установки. 6 з.п. ф-лы, 3 ил.

Изобретение относится к теплоэнергетике.

Известно, что эффективность (к.п.д.) газотурбинных установок (ГТУ) повышается при увеличении степени повышения давления воздуха 71 (отношение давления воздуха за компрессором к атмосферному давлению) и подогрева газа А (отношение температуры газа перед турбиной к температуре воздуха на входе в компрессор).

Целью изобретения является повышение эффективного к.п.д. ГТУ до 70% и более.

Известен способ форсирования газотурбинных двигателей, заключающийся в подаче воды на вход в двигатель (Теория и расчет воздушно-реактивных двигателей. Под ред. СМ. Шляхтенко., М., Машиностроение, 1987 г., с. 374÷375).

Известны двухкаскадные газотурбинные двигатели, в состав которых входят компрессор низкого и компрессор высокого давлений (там же, рис. 7.3, с. 185).

Поставленная цель достигается тем, что в двухкаскадной газотурбинной установке со степенью повышения давления воздуха в компрессоре низкого давления более 20 при суммарной степени повышения давления в компрессорах более 120 в пространство между компрессорами низкого и высокого давлений подается вода.

Сущность изобретения заключается в использовании внутренних термодинамических циклов (Письменный В.Л. Внутренние термодинамические циклы // М. - Конверсия в машиностроении. 2006, №3. С.5÷10).

Предпочтительно иметь:

стехиометрический состав топливовоздушной смеси;

водяную рубашку на корпусе камеры сгорания;

паровое охлаждение рабочих лопаток турбины;

керамические сопловые аппараты;

статическое давление за турбиной меньше атмосферного;

утилизатор тепловой энергии на выходе из турбины.

На фиг. 1 показана ГТУ.

на фиг. 2 показан термодинамический цикл ГТУ;

на фиг. 3 показаны зависимости параметров ГТУ от суммарной степени повышения давления воздуха.

ГТУ (фиг. 1) состоит из входного устройства 1, компрессора низкого давления 2, камеры смешения 3, внутри которой расположен водяной коллектор 4, компрессора высокого давления 5, камеры сгорания 6, турбины 7, теплообменника-конденсатора 8, выходного устройства 9, насосов (н).

Теплообменник-конденсатор 8 входит в состав паросиловой установки, рабочим телом которой является вода (пар).

Турбина 7 приводит в действие компрессоры 2 и 5, генератор электрической энергии (на фиг. 1 не показан).

Воздух через входное устройство 1 попадает в компрессор 2, где сжимается и нагревается, после чего поступает в камеру смешения 3. Туда же через коллектор 4 подается вода в количестве, при котором она превращается в пар (влажность воздуха менее 100%). Вода смешивается с воздухом и испаряется. Температура воздуха понижается. Образовавшаяся паровоздушная смесь поступает в компрессор 5, где сжимается и нагревается.

Сжатая и нагретая в компрессоре 5 паровоздушная смесь поступает в камеру сгорания ГТУ.

В камере сгорания паровоздушная смесь смешивается с топливом, которое сгорает. Образующийся при этом горячий газ поступает в турбину 7, которая совершает механическую работу. Для увеличения работы статическое давление на выходе из турбины поддерживается меньше атмосферного (за счет более высокой скорости истечения газа из последней ступени турбины). Работа турбины тратится на привод компрессоров, насосов и электрогенератора.

Оставшаяся после прохождения турбины теплота преобразуется в паросиловой установке (передается через теплообменник 8) в механическую работу и горячую воду, удаляется (с конденсатом) через выходное устройство 9 в атмосферу.

Для охлаждения камеры сгорания и рабочих лопаток турбины используется вода, которая через каналы в корпусе камеры сгорания (водяная рубашка) поступает в виде пара в рабочие лопатки турбины, и далее в газовоздушный тракт.

На фиг. 2 в P-υ координатах показан термодинамический цикл ГТУ (фиг. 1). Цикл состоит из внешнего цикла Lц1 (цикл Брайтона с отводом теплоты при сжатии) и двух внутренних циклов: Lц2 (цикл Письменного) и Lц3 (цикл Ренкина). Внешний цикл имеет энергообмен с внешней средой, внутренние - с внешним циклом. К внешнему циклу подводится теплота Q1, отводится - Qr. Термический к.п.д. ГТУ определяется как ηt=1-Qr/Q1.

Тепловые потоки показаны здесь же. К внешнему циклу, как уже сказано, подводится теплота Q1 (процесс к-г). Часть этой теплоты преобразуется в работу Lц1, которая используется для сжатия рабочих тел внутренних циклов (в насосах (н) и компрессоре высокого давления), для привода электрогенератора, а также - для компенсации всевозможных потерь, в том числе во внутренних циклах. Другая часть теплоты (Q1-2, и Q1-3) передается во внутренние циклы, в которых преобразуется в работу Lц2 и Lц3. Нереализованная во внутренних циклах теплота (Q2-1 и Q3-1) возвращается (условно) внешнему циклу, после чего рассеивается в атмосфере в виде теплоты Qr. Общая работа цикла ГТУ определяется как Lц=Lц1+m2⋅Lц2+m3⋅Lц3, где m2 и m3 - относительные расходы рабочих тел во внутренних циклах.

Новым здесь является цикл Письменного - внутренний термодинамический цикл, который реализуется с использованием тех же элементов тепловой машины (ГТУ), что и внешний цикл (существует параллельно внешнему циклу). Это качество цикла Письменного позволяет распределять подводимую к внешнему циклу энергию на два рабочих тела (воздух и пар), и тем самым, увеличивать количество подводимой в тепловой машине энергии (патент RU 2616137 С1).

На фиг. 3 показаны характеристики ГТУ (фиг. 1) в зависимости от суммарной степени повышения давления воздуха π.

Условные обозначения: πкнд - степень повышения давления воздуха в компрессоре низкого давления, πквд - степень повышения давления воздуха в компрессоре высокого давления; m2 и m3 - относительные расходы рабочих тел внутренних циклов; Ткнд* - температура воздуха на выходе из компрессо-ра низкого давления; Тквд* - температура паровоздушной смеси на выходе из компрессора высокого давления; Тг* - температура газа на входе в турбину; Ne - удельная мощность ГТУ; ηe∑ - суммарный эффективный к.п.д. ГТУ, ηе - эффективный к.п.д. ГТУ (без паросиловой установки).

Исходные данные ГТУ: внешние условия - стандартные; топливо - керосин; рабочее тело паросиловой установки - вода (пар); коэффициент избытка воздуха в камере сгорания - 1,1; степень повышения давления в компрессоре низкого давления - 30; температура лопаток первой ступени турбины - 1250 К; коэффициент интенсивности охлаждения лопаток турбины - 0,65; к.п.д. компрессора низкого давления - 0,83; к.п.д. компрессора высокого давления - 0,83; к.п.д. турбины - 0,95; к.п.д. паровой турбины - 0,9; механический к.п.д. - 0,99; полнота сгорания топлива - 0,99; коэффициент восстановления давления в камере смешения - 0,95; коэффициент восстановления давления в камере сгорания - 0,95.

Видно (фиг. 3), что цикл Письменного в сочетании с авиационно-космическими технологиями (к.п.д. элементов, паровое охлаждение лопаток турбины, монокристаллические лопатки, керамические сопловые аппараты, «водяная рубашка», технология «blisk» и д.р.) позволяет повысить эффективный к.п.д. ГТУ до 704-75%.

Форсированные ГТУ (фиг. 1) обладают уникальными энергетическими характеристиками, например, при расходе воздуха 210 кг/с мощность ГТУ составляет ~ 400 МВт (для сравнения, мощность Волжской ГЭС составляет 2660 МВт).

Для России разработка и внедрение форсированных ГТУ (к.п.д. ~ 70% и более) является, по мнению автора, национальной задачей. Большая часть запасов углеводородных топлив находится в северных широтах, что делает их добычу и доставку крайне затратными. Высокоэффективная переработка углеводородных топлив в электроэнергию в местах их добычи позволит решить проблему доставки энергии потребителю (ЛЭП), обустроить северные города по образцу той же Исландии (количество тепловой энергии, выделяющееся при переработке топлива в электроэнергию, учитывая объемы добычи топлива, соизмеримо с энергией геотермальных источников).


СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
27.06.2014
№216.012.d6c8

Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный...
Тип: Изобретение
Номер охранного документа: 0002520762
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfd5

Парогазотурбинная установка

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002523087
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5ab

Дождевальная установка

Применение в качестве дождевальной установки, создающей облака, газотурбинного двигателя, содержащего турбокомпрессор, форсажную камеру, установленную вертикально относительно поверхности земли, внутри которой за зоной горения расположен водяной коллектор с форсунками, направленными по потоку...
Тип: Изобретение
Номер охранного документа: 0002528724
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa8f

Способ охлаждения газотурбинного двигателя

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим...
Тип: Изобретение
Номер охранного документа: 0002529989
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0eb9

Способ регулирования осевого компрессора в системе газотурбинного двигателя

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной...
Тип: Изобретение
Номер охранного документа: 0002535186
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.66d5

Противообледенительная система газотурбинного двигателя

Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения...
Тип: Изобретение
Номер охранного документа: 0002557878
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c974

Способ форсирования двухконтурного турбореактивного двигателя

Способ форсирования двухконтурного турбореактивного двигателя, заключающийся в подаче в основную камеру сгорания форсажного топлива. Коллектор форсажного топлива расположен в зоне вторичного воздуха основной камеры сгорания. Предпочтительно частота вращения компрессора и перепад давлений на...
Тип: Изобретение
Номер охранного документа: 0002578941
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.3880

Способ уплотнения воздушных каналов

Способ уплотнения воздушных каналов заключается в использовании лабиринтного уплотнения. Перед лабиринтным уплотнением расположена полость низкого давления, из которой воздух центробежным компрессором перекачивается в полость высокого давления. Рабочие лопатки компрессора размещены на валу, а...
Тип: Изобретение
Номер охранного документа: 0002582725
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a603

Теплообменник

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности...
Тип: Изобретение
Номер охранного документа: 0002607916
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ac9c

Авиационная стехиометрическая силовая установка и способ ее регулирования

Силовая установка состоит из входного устройства, турбокомпрессора с отбором воздуха за компрессором для охлаждения лопаток турбины, выходного устройства. Турбокомпрессор имеет степень повышения давления в компрессоре не более четырех, одну ступень турбины. Воздух охлаждается в...
Тип: Изобретение
Номер охранного документа: 0002612482
Дата охранного документа: 09.03.2017
Показаны записи 1-10 из 27.
27.06.2014
№216.012.d6c8

Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный...
Тип: Изобретение
Номер охранного документа: 0002520762
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfd5

Парогазотурбинная установка

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002523087
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5ab

Дождевальная установка

Применение в качестве дождевальной установки, создающей облака, газотурбинного двигателя, содержащего турбокомпрессор, форсажную камеру, установленную вертикально относительно поверхности земли, внутри которой за зоной горения расположен водяной коллектор с форсунками, направленными по потоку...
Тип: Изобретение
Номер охранного документа: 0002528724
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa8f

Способ охлаждения газотурбинного двигателя

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим...
Тип: Изобретение
Номер охранного документа: 0002529989
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0eb9

Способ регулирования осевого компрессора в системе газотурбинного двигателя

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной...
Тип: Изобретение
Номер охранного документа: 0002535186
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.66d5

Противообледенительная система газотурбинного двигателя

Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения...
Тип: Изобретение
Номер охранного документа: 0002557878
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c974

Способ форсирования двухконтурного турбореактивного двигателя

Способ форсирования двухконтурного турбореактивного двигателя, заключающийся в подаче в основную камеру сгорания форсажного топлива. Коллектор форсажного топлива расположен в зоне вторичного воздуха основной камеры сгорания. Предпочтительно частота вращения компрессора и перепад давлений на...
Тип: Изобретение
Номер охранного документа: 0002578941
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.3880

Способ уплотнения воздушных каналов

Способ уплотнения воздушных каналов заключается в использовании лабиринтного уплотнения. Перед лабиринтным уплотнением расположена полость низкого давления, из которой воздух центробежным компрессором перекачивается в полость высокого давления. Рабочие лопатки компрессора размещены на валу, а...
Тип: Изобретение
Номер охранного документа: 0002582725
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a603

Теплообменник

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности...
Тип: Изобретение
Номер охранного документа: 0002607916
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ac9c

Авиационная стехиометрическая силовая установка и способ ее регулирования

Силовая установка состоит из входного устройства, турбокомпрессора с отбором воздуха за компрессором для охлаждения лопаток турбины, выходного устройства. Турбокомпрессор имеет степень повышения давления в компрессоре не более четырех, одну ступень турбины. Воздух охлаждается в...
Тип: Изобретение
Номер охранного документа: 0002612482
Дата охранного документа: 09.03.2017
+ добавить свой РИД