×
19.10.2018
218.016.9466

Способ получения смешанных триарилфосфатов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения смешанных триарилфосфитов и может быть применено в химической промышленности. В предложенном способе проводят взаимодействие фенола с фосфорной кислотой, взятых в мольном отношении 2:1, при достижении температуры 175-250°С в течение 6,5-7 ч в атмосфере инертного газа при непрерывной отгонке азеотропной смеси фенол-вода. В продукт реакции вводят пара-трет-бутилфенол в мольном отношении 2:1 к взятой фосфорной кислоте и выдерживают реакционную смесь при этой же температуре в течение 6-7 ч. Выделяющуюся в процессе воду в виде азеотропной смеси фенол-вода отделяют непрерывной отгонкой. Получают целевой продукт, представляющий собой смесь смешанных триарилфосфатов I-IV:трифенилфосфата (I), п-трет-бутилфенилдифенилфосфата (II), ди(п-»трет-бутилфенил)фенилфосфата (III), три(п-трет-бутилфенил)фосфата (IV). Предложен новый эффективный способ получения смешанных полных (нейтральных) триарилфосфатов. 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к органическому синтезу и касается способа получения смешанных нейтральных триарилфосфатов, применяемых в качестве огнестойких масел и гидравлических жидкостей.

Триарилфосфаты находят применение как смазки, гидравлические жидкости, обладающие высокой устойчивостью к окислению и термическому разложению. Триарилфосфаты используются в качестве базовых компонентов огнестойких масел. Наиболее востребованные современные базовые основы огнестойких масел представлены смесевыми композициями триарилфосфатов, в которых арильные группы содержат алкильные заместители, в частности, третбутильные. Композиции представлены нейтральными полными эфирами фосфорной кислоты с фенолом и пара-третбутилфенолом, включая смешанные. Эксплуатационные свойства таких композиций зависят от их состава.

Известным способом получения ариловых эфиров фосфорной кислоты является взаимодействие хлорокиси фосфора с фенолами, замещенными фенолами или их смесью. Этерификацию хлорокиси фосфора проводят в присутствии катализатора, например безводного хлорида магния, при нагревании от 80°С до 170°С. Процесс протекает легко, однако осложнен образованием продуктов неполной этерификации хлорокиси фосфора, для отделения которых требуется многократное фракционирование (К.А. Андрианов, Л.М. Хананашвили. Технология элементоорганических мономеров и полимеров. М., Химия, с. 333, 1973).

Известны способы получения смешанных триарилфосфатов взаимодействием хлорокиси фосфора с фенолами общей формулы:

где X=Н, трет-С4Н9.

На первой стадии проводят алкилирование хлорокиси фосфора трет-бутилфенолом с образованием моно- и дихлорфосфатов, после чего вводят фенол и получают смесь средних фосфатов с выходом ~ 92-94 масс %. В качестве катализатора используют MgCl2, TiCl4 (US 6242631 В1, опубл. 05.06.2001).

Согласно способу, описанному в US 4087386, опубл. 02.05.1978, смешанные триарилфосфаты получают добавлением хлорокиси фосфора к смеси фенола и трет-бутилфенола при катализе хлоридом магния с выходом 94 масс %.

Общим недостатком описанных выше способов получения смешанных фосфатов на основе хлорокиси фосфора является образование хлористого водорода как сопряженного продукта реакции, удаление которого требует проведения дополнительных технологических операций. Наличие хлорокиси фосфора и хлористого водорода вызывает необходимость решения проблемы коррозии оборудования и загрязнения окружающей среды. Кроме того, хлорокись фосфора представляет собой легко гидролизующееся высокотоксичное вещество с токсикологическим классом опасности I (ПДК 0,4 мг/м3), работа с которым допускается только на специализированных химических предприятиях. Поэтому практический интерес представляет использование для получения триарилфосфатов альтернативных источников фосфора, в частности малотоксичной и доступной фосфорной кислоты.

Известен способ получения трикрезил- и трифенилфосфата этерификацией, соотвественно крезолов и фенола 85%-ной фосфорной кислотой. В случае фенола процесс проводят при нагревании реакционной смеси от температуры 115°С до 300°С с непрерывной отгонкой азеотропа вода-фенол на ректификационной колонке, частичным отделением воды в сепараторе и возврате органической фазы на орошение колонки. Образовавшийся по завершении реакции трифенилфосфат выделяют перегонкой в вакууме с выходом 59 масс %. Температура застывания полученного продукта равна 44°С, что ниже известной (48-50°С). Трифенилфосфат подвергают промывке 5%-ным водным раствором гидроокиси натрия, после чего выход неизбежно падает (US 2805240 А, опубл. 03.09.1957).

Реализация способа также не лишена недостатков. В частности, плотности фенола и крезолов незначительно превышают плотность воды, что без использования дополнительного растворителя затрудняет расслаивание дистиллята в сепараторе и вызывает технические трудности, связанные с подачей на орошение колонки нижней органической фазы. При этом органическая фаза фенолов содержит значительное количество воды (растворимость в феноле около 30 масс %, в крезоле 10-15 масс %), которая с потоком орошения возвращается в реакционную систему и замедляет процесс, сдвигая реакционное равновесие в сторону исходных веществ и ухудшая тем самым выход конечного продукта. Кроме этого, индивидуальный трифенилфосфат и трикрезилфосфаты без дополнительного введения более тяжелых фенольных заместителей непригодны для использования в качестве огнестойкого масла, а в случае менее "кислых" ксиленолов и других подходящих для этой цели алкилфенолов реакция идет крайне медленно.

Известен способ получения триарилфосфатов этерификацией ксиленолов 85%-ной фосфорной кислотой. В качестве катализатора используют триарилфосфиты в количестве 4-5 масс % от массы вводимого фенола. Реакцию проводят при постепенном повышении температуры от 200 до 300°С. Триксиленилфосфат-сырец выделяют вакуумной перегонкой. Товарный продукт получают после промывки сырца щелочью с выходом 79-80 масс % на прореагировавший ксиленол (SU 176895, опубл. 01.12.1965).

Недостатком описанного способа является дополнительная стадия промывки сырого продукта щелочью, а также использование в качестве катализатора значительного количества дорогостоящего, труднодоступного и склонного к окислению фосфорорганического соединения - триксиленилфосфита. Другим недостатком этого способа является тот факт, что высокая токсичность триарилфосфатов на основе ксиленолов, существенным образом сдерживает их применение в качестве огнестойкого масла. Кроме того, их производство не обеспечено воспроизводимой сырьевой базой.

Наиболее близким техническим решением к предложенному способу является способ получения триарилфосфатов взаимодействием фосфорной кислоты с различными гидроксиарильными соединениями, а именно, крезолом или изопропилфенолом. Способ осуществляют в присутствии жесткого катиона, взятого в качестве катализатора. Таким катионом может быть катион, выбранный из перечня: В3+, Cd2+, Sb5+, Mg2+, Mn2+, Cu2+, Zn2+, Со2+, Li+, Fe3+, Al3+ и взятый в количестве 1-5 масс %. Процесс этерификации фосфорной кислоты фенолами проводят при перемешивании и непрерывном отводе реакционной воды азеотропной отгонкой с фенолом. Для облегчения удаления воды из паровой и конденсированной фаз используют инертный углеводородный растворитель. Образовавшийся триарилфосфат выделяют дистилляцией при пониженном давлении с рециклом интермедиата и катализатора в реакционную зону. В процессе используют 100%-ную фосфорную кислоту, реакцию ведут при температуре 240-255°С в течение 5,75 ч. По реакции с крезолами получают состав реакционной смеси, масс %: монокрезилфосфат - 3, дикрезилфосфат - 30, трикрезилфосфат - 27, непрореагировавший крезол - 34. Аналогичная реакция с орто-изопропилфенолом дает 43,2 масс % три-изопропилфенилфосфата и 56,8 масс % ди-изопропилфенилфосфата (US 5097056 А, опубл. 17.03. 1992).

Недостатками способа являются: невысокий выход триарилфосфата (43-56 масс % для крезола); низкая селективность образования целевого продукта (56-61 масс % при реакции с крезолом); наличие в составе продуктов реакции неполных (кислых) фосфатов, в количествах, соизмеримых с количеством целевого продукта; использование 100%-ной фосфорной кислоты, что требует специальной стадии концентрирования кислоты общепринятого использования (87%-ной).

Техническая задача, решаемая изобретением, заключается в разработке способа получения смешанных триарилфосфатов, исключающего недостатки ближайшего аналога, и упрощение способа их получения.

Технический результат от реализации изобретения заключается в упрощении способа за счет исключения катализатора и применения фосфорной кислоты общепринятого использования (87%-ной), повышении селективности образования смешанных полных (нейтральных) триарилфосфатов и выхода целевого продукта.

Технический результат от реализации изобретения достигается тем, что проводят взаимодействие фенола с фосфорной кислотой, взятых в мольном отношении 2:1, при достижении температуры 175-250°С в течение 6,5-7 ч в атмосфере инертного газа при непрерывной отгонке азеотропной смеси фенол-вода, в полученный продукт реакции вводят пара-трет-бутилфенол в мольном отношении 2:1 к взятой фосфорной кислоте и выдерживают реакционную смесь при этой же температуре в течение 6-7 ч, выделяющуюся в процессе воду в виде азеотропной смеси фенол-вода отделяют непрерывной отгонкой и получают целевой продукт, представляющий собой смесь смешанных триарилфосфатов I-IV:трифенилфосфата (I), п-трет-бутилфенилдифенилфосфата (II), ди(п-трет-бутилфенил)фенилфосфата (III), три(п-трет-бутилфенил)фосфата (IV):

Указанные признаки весьма существенны.

Организация процесса с указанной последовательностью введения компонентов позволяет избежать разрушения пара-трет-бутилфенола по реакции деалкилирования, протекающей при повышенных температурах. Участие незамещенного фенола в реакции с фосфорной кислотой на начальной стадии процесса обеспечивает снижение кислотности реакционной среды, чем предотвращает протекание нежелательного побочного процесса деалкилирования алкилфенола в фенол. Иные последовательности введения фенольных компонентов приводят, как показано в примерах, к нежелательному обогащению смеси смешанных триарилфосфатов трифенилфосфатом.

Протекание процесса контролируют по количеству выделившейся воды с учетом воды, внесенной с Н3РО4, конверсию «безводной» фосфорной кислоты рассчитывают по количеству выделившейся реакционной воды. Количество и состав образовавшихся смешанных триарилфосфатов определяют методом газожидкостной хроматографии. Селективность по смешанным триарилфосфатам (I-IV) рассчитывают на основании материального баланса процесса по воде, количеству и составу целевых эфиров. Реакционную воду и воду, содержащуюся в фосфорной кислоте, удаляют в виде азеотропа, причем азеотропообразующим агентом является сам фенол, который после отделения воды возвращается в реакционную смесь. Реакция протекает через последовательное образование моно-, ди- и триэфиров фосфорной кислоты. Образование первичных и вторичных эфиров (кислых эфиров) происходит достаточно быстро, после чего равновесная концентрация воды становится очень низкой (0,01-0,1 масс %), и для дальнейшего протекания реакции необходимо обеспечить такой эффективный отвод воды, чтобы ее концентрация была ниже равновесной. Растворимость фенола в воде составляет около 30 масс %, поэтому после расслоения азеотропа непосредственный возврат фенола в реакционную смесь не способен обеспечить низкую концентрацию воды.

Проблема удаления воды в настоящем изобретении решается следующим образом. Паровая фаза реакционной смеси, представляющая собой смесь фенола и воды, поступает в ректификационную колонку. В верхней части колонки отделяется азеотроп фенол-вода, который контактирует с парами гидрофобного растворителя, хорошо растворяющего фенол, но не растворяющегося в воде. Смесь паров растворителя и азеотропа фенол-вода поступает в устройство для конденсации, охлаждения и сепарации - насадка Дина-Старка с обратным холодильником. После охлаждения вода отслаивается в сепараторе от смеси фенола с растворителем и отводится в виде нижнего слоя, а освобожденный от воды органический слой (фенол и растворитель) поступает на орошение верха колонки, где растворитель испаряется и совместно с парами азеотропа вновь поступает в сепаратор. Благодаря использованию гидрофобного растворителя, органическая фаза, поступающая на орошение колонки, практически не содержит воды.

В качестве растворителя для расслаивания азеотропа фенол-вода могут быть использованы органические соединения, не растворяющиеся в воде, плохо растворяющиеся в воде и хорошо растворяющие фенол. Температура кипения растворителя должна быть ниже температуры кипения фенола (180°С) и предпочтительнее сопоставима с температурой кипения азеотропа фенол-вода (99,6°С, содержание воды 91 масс %) или несколько ниже ее. При этом плотность растворителя должна быть ниже плотности воды, чтобы обеспечить ее технологически удобное отделение в виде нижнего слоя. Всем этим требованиям удовлетворяют ароматические углеводороды ряда бензола с числом углеродных атомов до 9, простые, сложные эфиры и кетоны с числом углеродных атомов от 5 до 8, а также ряд других соединений.

Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры, которые не ограничивают объем притязаний, представленных в формуле изобретения.

Пример 1.

В трехгорлую колбу, снабженную термопарой для измерения температуры куба, капельной воронкой для ввода расплава фенола и насадочной ректификационной колонкой (∅20×200 мм, спиральная насадка ∅3,5×3 мм из проволоки ∅0,5 мм сталь 12Х18Н10Т), сверху которой установлена насадка Дина-Старка с охлаждающей рубашкой и обратным холодильником, помещают 20,05 г (0,21 моль) фенола и 12,00 г (7,1 мл, 0,107 моль Н3РО4) раствора 87%-ной фосфорной кислоты. Насадку Дина-Старка заполняют 25 мл смеси метилизобутилкетон-толуол в объемном соотношении 7:3. Реакционную смесь нагревают в атмосфере аргона в течение 6,5 ч, непрерывно отгоняя через колонку азеотропную смесь фенол-вода и отделяя воду в насадке Дина-Старка. Температура куба самопроизвольно повышается от 175 до 250°С. Затем в реакционную смесь вводят 32,00 г (0,213 моль) пара-трет-бутилфенола и выдерживают в течение 6 ч при этой же температуре. Суммарно отделяется 4,7 мл воды. В результате реакции образуются смешанные триарилфосфаты с указанными фенолами, состав которых приведен в таблице. Селективность образования полных смешанных триарилфосфатов (I-IV) 79 моль %, конверсия в расчете на безводную Н3РО4 82 моль %. Выход целевого продукта - 64,8 моль %, содержание трифенилфосфата не превышает 30,7 моль %.

Пример 2.

Процесс проводят, как описано в примере 1, но пара-третбутилфенол вводят в количестве 17,60 г (0,117 моль). В ходе реакции отделяется 5 мл воды, что составляет конверсию Н3РО4 60 моль % и селективность образования полных смешанных триарилфосфаов 81 моль %. Выход целевого продукта - 48,6 моль %. Пример показывает, что уменьшение количества вводимого пара-третбутилфенола приводит к снижению конверсии и выхода, а также к увеличению содержания трифенилфосфата в составе результирующей композиции смешанных триарилфосфатов.

Пример 3.

Процесс проводят как описано в примере 1, но со следующей последовательностью введения фенольных компонентов: 1) пара-трет-бутилфенол, 2) фенол. Количество воды, выделившейся в результате реакции, составляет 3,7 мл, что соответствует конверсии Н3РО4 65 моль % и селективности образования полных смешанных триарилфосфатов 100 моль %. Выход целевого продукта - 65 моль %. Композиция полных эфиров представлена преимущественно трифенилфосфатом, что связано с протеканием нежелательного процесса деалкилирования (деградации) пара-трет-бутилфенола.

Пример 4 (пример сравнения).

Процесс проводят, как описано в примере 3, но с одновременной загрузкой в реакционную зону фенольных компонентов как в ближайшем аналоге. При сравнении с примером 1 наблюдается увеличение содержания трифенилфосфата, связанное с протеканием нежелательного процесса деалкилирования (деградации) пара-трет-бутилфенола. Выход целевого продукта - 86 моль %.

Пример 5 (пример сравнения).

Процесс проводят, как описано в примере 4, но с уменьшенным временем реакции. Сокращение времени контакта приводит к снижению содержания трифенилфосфата в продукте, что указывает на меньшую степень деградации алкилзамещенного фенола. Выход целевого продукта - 41,5 моль %.


Способ получения смешанных триарилфосфатов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 63.
26.08.2017
№217.015.e958

Катализатор изодепарафинизации углеводородного сырья с10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации, а также способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с...
Тип: Изобретение
Номер охранного документа: 0002627770
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.08a3

Гидравлическое масло арктического назначения

Гидравлическое масло арктического назначения с улучшенными низкотемпературными свойствами, предназначено для использования в гидравлических системах строительно-дорожных машин, экскаваторах, бульдозерах, снегоходах, буровых установках и другой технике, которая должна сохранять работоспособность...
Тип: Изобретение
Номер охранного документа: 0002631659
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.15bc

Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу. Проводят реакцию радикальной сополимеризации малеинового ангидрида и широкой фракции 1-олефинов C-C при соотношении исходных реагентов от 1:0,92 до 1:3,7. Реакцию...
Тип: Изобретение
Номер охранного документа: 0002635107
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.36aa

Способ получения мезопористой наноструктурированной пленки металло-оксида методом электростатического напыления

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с...
Тип: Изобретение
Номер охранного документа: 0002646415
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3c8d

Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу. Проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии...
Тип: Изобретение
Номер охранного документа: 0002647858
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.4120

Сенсибилизированный красителем металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ). Наиболее успешно настоящее изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002649239
Дата охранного документа: 30.03.2018
09.06.2018
№218.016.5f51

Способ получения синтетической нефти

Настоящее изобретение относится к способу получения синтетической нефти из продуктов синтеза Фишера-Тропша, включающий гидрирование смеси синтетических углеводородов в реакторе с неподвижным слоем никельсодержащего катализатора в токе газа гидрирования, включающего моноксид углерода и водород....
Тип: Изобретение
Номер охранного документа: 0002656601
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.614c

Фотосенсибилизатор для солнечных элементов

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным...
Тип: Изобретение
Номер охранного документа: 0002657084
Дата охранного документа: 08.06.2018
01.07.2018
№218.016.697c

Способ получения циклопентана

Изобретение относится к способу получения циклопентана, включающему последовательно осуществляемые частичное и исчерпывающее гидрирование циклопентадиена в растворителе в присутствии катализатора. Способ характеризуется тем, что частичное гидрирование ведут при температуре 10…40°С, давлении...
Тип: Изобретение
Номер охранного документа: 0002659227
Дата охранного документа: 29.06.2018
10.07.2018
№218.016.6ee7

Способ определения величины максимального горизонтального напряжения нефтегазового пласта

Изобретение относится к нефтегазовой промышленности и может быть использовано для определения величины максимального горизонтального напряжения в продуктивных пластах нефтегазовых месторождений для выбора оптимальной технологии бурения и эксплуатации скважин. Способ включает проведение...
Тип: Изобретение
Номер охранного документа: 0002660702
Дата охранного документа: 09.07.2018
Показаны записи 1-10 из 28.
27.08.2014
№216.012.f0c4

Способ получения альдегидов

Изобретение относится к способу получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд. При этом в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или...
Тип: Изобретение
Номер охранного документа: 0002527455
Дата охранного документа: 27.08.2014
20.12.2014
№216.013.1211

Способ региоселективного получения н-пентаналя

Изобретение относится к способу региоселективного получения н-пентаналя, который используют для получения пластификаторов, растворителей, присадок к моторным маслам, синтетических смазочных материалов. Способ проводят в среде растворителя, содержащего альдегид, взаимодействием синтез-газа с...
Тип: Изобретение
Номер охранного документа: 0002536048
Дата охранного документа: 20.12.2014
20.07.2015
№216.013.63ab

Технологическая установка получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов

Изобретение относится к технологической установке получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов. Установка включает подключенные к реактору через устройства очистки источники синтез-газа и олефинов, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002557062
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b66

Установка для получения альдегидов гидроформилированием олефинов с3-с4 с применением каталитической системы на основе родия

Изобретение относится к установке для получения альдегидов гидроформилированием олефинов С3-С4 с применением каталитической системы на основе родия. Установка включает параллельно подключенные к реактору через устройства очистки источники синтез-газа и олефина, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002559052
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6faa

Способ получения этриола

Настоящее изобретение относится к способу получения этриола, который является сырьем для производства сложноэфирных смазочных материалов, алкидных и эпоксидных смол, эмалей, полиэфиров и пенополиуретанов, пластификаторов полимеров, а также клеев для металлов. Способ предусматривает...
Тип: Изобретение
Номер охранного документа: 0002560156
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.739c

Способ непрерывного двухступенчатого гидроформилирования олефинов с3, с4 и технологическая установка для его осуществления

Изобретение относится к способу непрерывного двухступенчатого гидроформилирования олефинов C3, C4. Способ включает подачу в реактор первой ступени свежих олефина и синтез-газа, рециркулирующего катализаторного раствора, содержащего комплекс родия, фосфорорганические лиганды, продуктовые...
Тип: Изобретение
Номер охранного документа: 0002561171
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7a96

Способ непрерывного гидроформилирования олефинов с-с в альдегиды

Настоящее изобретение относится к способу непрерывного гидроформилирования олефинов С-С в альдегиды в присутствии каталитической системы, состоящей из индивидуальных компонентов - растворимого соединения родия, дифосфитного лиганда и дополнительного промотирующего фосфорорганического лиганда,...
Тип: Изобретение
Номер охранного документа: 0002562971
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.91fe

Устройство для контроля уровня жидкости

Изобретение относится к контрольно-измерительной технике и может быть использовано в системах контроля объема и уровня жидкости. Техническим результатом служит повышение точности определения уровня и фиксация динамики его изменения с высокой точностью. Устройство имеет две линейные...
Тип: Изобретение
Номер охранного документа: 0002568990
Дата охранного документа: 20.11.2015
20.04.2016
№216.015.3654

Способ определения содержания олефинов в синтетических жидких углеводородах, полученных по методу фишера-тропша (варианты)

Изобретение относится к органическому синтезу, а именно к неразрушающим методам определения содержания олефинов в синтетических жидких углеводородах с помощью комбинационного рассеяния света. Способ заключается в том, что устанавливают калибровочные зависимости концентраций альфа-, смеси...
Тип: Изобретение
Номер охранного документа: 0002581191
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3f0e

Гидрид-карбонильный полифосфитный комплекс родия со смешанными фосфорорганическими лигандами для катализа процесса гидроформилирования олефинов

Изобретение относится к гидрид-карбонильному полифосфитному комплексу родия со смешанными фосфорорганическими лигандами. Комплекс имеет общую формулу HRh(CO)(A)(B), где А - полифосфитный лиганд общей формулы: в которой k+m=2, причем возможно k=0 или m=0; Х - углеводородный радикал, включающий...
Тип: Изобретение
Номер охранного документа: 0002584952
Дата охранного документа: 20.05.2016
+ добавить свой РИД