×
15.10.2018
218.016.926d

Результат интеллектуальной деятельности: СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР

Вид РИД

Изобретение

Аннотация: Изобретение относится к химии гуанидинсодержащих низкомолекулярных и высокомолекулярных соединений и может найти применение при получении препаратов, способных подавлять рост бактерий. Конкретно изобретение относится к способу получения соли метакрилоилгуанидина, который включает получение метакрилоилгуанидина реакцией гуанидина и метилметакрилата в органическом растворителе и реакцию метакрилоилгуанидина с кислотой. Способ характеризуется тем, что в качестве органического растворителя используют ацетонитрил, а в качестве кислоты – уксусную, трифторуксусную или метакриловую кислоту. Изобретение относится также к способам получения полимера и сополимера соли метакрилоилгуанидина, полимеру и сополимеру соли метакрилоилгуанидина, полученным указанными способами. 5 н. и 3 з.п. ф-лы, 13 ил., 1 табл., 29 пр.

Изобретение относится к химии гуанидинсодержащих низкомолекулярных (мономеров) и высокомолекулярных (полимеров и сополимеров) соединений, конкретно к усовершенствованному способу синтеза производных гуанидина и (со) полимеров из них. Полученные мономеры и (со) полимеры в силу особенностей строения гуанидиновой группы и ее комплексообразующих свойств могут послужить основой различных форм новых бактерицидных препаратов (полимерные растворы, порошки, полимер-полимерные нанокомпозиции, строительные материалы, включая лакокрасочные и др.), в том числе пролонгированного действия для профилактики распространения резистентных бактерий в местах массового скопления людей в помещениях и общественном транспорте, применяться для создания катализаторов для переработки продуктов важнейших процессов нефтехимии, а также как носители лекарственных форм и др.

Известны:

способ получения соли метакрилоилгуанидина, а именно метакрилоилгуанидин гидрохлорида (МГГХ), реакцией с соляной кислотой метакрилоилгуанидина, выделенного из раствора после взаимодействия гуанидина с метилметакрилатом в ацетоне или диоксане, где гуанидин получен растворением при повышенной температуре в метаноле предварительно полученного метилата натрия и реакцией метилата натрия с гуанидингидрохлоридом;

способ получения полимера этой соли радикальной полимеризацией в воде;

способ получения сополимера этой соли с диаллилдиметиламмоний хлоридом радикальной полимеризацией в воде с сомономером;

полученные этими способами полимер и сополимер

[см., А.А. Жанситов, А.И. Мартыненко, Н.И. Попова, Н.А. Сивов // Синтез новых мономеров метакрилоилгуанидина и его гидрохлорида и их способность к радикальной (со)полимеризации Известия ВУЗов. Химия и химическая технология. 2012. Т. 55. №9. с. 46-52]. Данные способы, полимер и сополимер по назначению и совокупности существенных признаков могут быть приняты в качестве наиболее близкого аналога (прототипа) изобретения. Прототип обладает рядом существенных недостатков: синтез соли метакрилоилгуанидина, и, соответственно, полимера и сополимера этой соли является длительным (продолжительность отдельных стадий составляет более суток), в синтезе используют токсичные и пожароопасные компоненты (метанол, щелочной металл натрий).

Целью изобретения является улучшение условий труда и упрощение технологии процесса, а также расширение ассортимента целевых продуктов и получение (со)полимеров с бактерицидными свойствами.

Поставленная цель достигается тем, что в способе получения соли метакрилоилгуанидина, включающем получение метакрилоилгуанидина реакцией гуанидина и метилметакрилата в органическом растворителе и реакцию метакрилоилгуанидина с кислотой, в качестве органического растворителя используют ацетонитрил, а в качестве кислоты - уксусную или трифторуксусную, или метакриловую кислоту.

Гуанидин получают растворением соли гуанидина (гуанидингидрохлорид или дигуанидинкарбонат, предпочтительно используют дигуанидинкарбонат) в этанольном или водном растворе гидроксида натрия при комнатной температуре. В результате проведения реакции по предлагаемым схемам гуанидин получают с количественным выходом. При этом исключается использование как метанола, так и натрия. Далее полученный гуанидин реагирует с метилметакрилатом в органическом растворителе (ацетон, диоксан, ацетонитрил) с получением раствора метакрилоилгуанидина Выход метакрилоилгуанидина (МГУ) составляет 50-65% в расчете на гуанидин. МГУ могут как выделять из раствора, так и не выделять из него. Выходы солей в расчете на МГУ достигают 95% и более. Получают мономерные соли соответствующего строения: метакрилоилгуанидин трифторацетат (МГТФА), метакрилоилгуанидин ацетат (МГАц), метакрилоилгуанидин метакрилат (МГМА), как приведено на схеме:

Поставленная цель также достигается тем, что в способе получения полимера соли метакрилоилгуанидина, включающем радикальную полимеризацию соли метакрилоилгуанидина в растворителе под действием инициаторов радикальной полимеризации и выделение полученного полимера, в качестве соли метакрилоилгуанидина используют соль, полученную заявленным способом, а полимеризацию проводят при 30-80°С.

Структуры полимеров представлены на ниже приведенной схеме:

Еще одна поставленная цель достигается тем, что в способе получения сополимера соли метакрилоилгуанидина, включающий радикальную сополимеризацию мономера - соли метакрилоилгуанидина - с сомономером в растворителе под действием инициаторов радикальной полимеризации и выделение полученного сополимера, в качестве мономера используют соль метакрилоилгуанидина, полученную заявленным способом, в качестве сомономера - диаллилдиметиламмоний хлорид (ДАДМАХ) или метилметакрилат (ММА), или метакриловую кислоту (МАК),, или соль метакрилоилгуанидина, также полученную заявленным способом и отличную от мономера, а указанную сополимеризацию проводят при 20-60°С.

Предпочтительно в качестве растворителя используют ацетон или диметилсульфоксид.

Могут использовать и другие растворители, такие, как вода, метанол.

Применяют обычно используемые инициаторы радикальной полимеризации, например, персульфат аммония или динитрила азобисизомасляной кислоты. Полимеры (гомополимеры) получают с конверсией 47-84%, сополимеры - с конверсией 47-84%.

Поставленная цель также достигается тем, что полимер соли метакрилоилгуанидина получен заявленным способом из соли метакроилгуанидина и трифторуксусной кислоты и обладает свойством подавлять рост бактерий.

Поставленная цель также достигается тем, что сополимер соли метакрилоилгуанидина получен заявленным способом из мономера - соли метакроилгуанидина и трифторуксусной кислоты и сомономера диаллилдиметиламмоний хлорида, и обладает свойством подавлять рост бактерий.

Синтез солей из МГУ и соответствующих кислот в различных растворителях описан в примерах 1-6.

Пример 1.

В двугорлую круглодонную колбу объемом 0.5 л, снабженную мешалкой и обратным холодильником, помещают 16 г (0.4 моль) гидроксида натрия и прикапывают этиловый спирт (200 мл), и перемешивают при комнатной температуре до растворения. В полученный раствор этилата натрия при перемешивании порциями добавляют эквимольное количество (41.7 г, 0.4 моль) 92% гуанидингидрохлорида (ГГХ), перемешивают 3 часа, после чего раствор гуанидина отфильтровывают от выпавшего осадка хлорида натрия, отгоняют на роторном испарителе этанол, остаток сушат в вакуумном шкафу. Получают 23.6 г (выход количественный) твердого гуанидина.

Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 1).

К полученному гуанидину (23.6 г, 0.4 моль), находящемуся в круглодонной колбе, снабженной мешалкой и капельной воронкой, добавляют 300 мл ацетона. Затем при перемешивании капают в смесь гуанидина и растворителя в течение часа при комнатной температуре ММА (51,6 мл, 0,48 моль). В процессе взаимодействия ММА и гуанидина образуется осадок нерастворимого побочного продукта (циклический аналог МГУ). Раствор перемешивают 3 часа при комнатной температуре. По окончании реакции образовавшийся циклический побочный продукт отфильтровывают. После удаления растворителя на роторном испарителе остаток сушат в вакууме при комнатной температуре. Получают 32.5 г МГУ (выход 64%).

Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 2).

Полученный МГУ (12.7 г, 0.1 моль) помещают в плоскодонную колбу с магнитной мешалкой и растворяют в 100 мл ацетона. Раствор охлаждают смесью льда с поваренной солью до - (5-10)°С. Затем прикапывают раствор 32%-ной соляной кислоты (10 мл, 0.1 моль) в 10 мл ацетона (0.5 часа); температура в реакционной массе не превышала - (5) - 0°С. После добавления всего количества соляной кислоты раствор перемешивают еще 0.5 часа при комнатной температуре. Выпавший белый осадок метакрилоилгуанидин гидрохлорида (МГГХ) отфильтровывают на стеклянном фильтре, промывают абсолютными ацетоном и диэтиловым эфиром и сушат в вакууме при комнатной температуре. Получают 16 г МГГХ (выход 97%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 3).

Пример 2.

Метакрилоилгуанидин трифторацетат (МГТФА) получают как в примере 1. Отличие состоит в том, что в качестве кислоты используют трифторуксусную кислоту (11.4 г, 0.1 моль в 10 мл ацетона). Получают 18.3 г соли (выход 76%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 4)

Пример 3.

МГТФА получают как в примере 2. Отличие состоит в том, что в качестве растворителя используют ацетонитрил (100 мл). В этом случае соль не выпадает, раствор упаривается до 20 мл, а затем выпавшую соль фильтруют и перекристаллизовывают из ацетонитрила. Получают 17.1 г соли (выход 71%).

Пример 4.

Метакрилоилгуанидин ацетат (МГАц) получают как в примере 1. Отличие состоит в том, что в качестве кислоты используют уксусную кислоту (6.0 г, 0.1 моль в 10 мл ацетона). Получают 18.5 г соли (выход 99%).

Пример 5.

МГАц получают как в примере 4. Отличие состоит в том, что в качестве растворителя используют ацетонитрил (100 мл). Получают 17.6 г соли (выход 94%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 5).

Пример 6.

Метакрилоилгуанидин метакрилат (МГМА) получают как в примере 1. Отличие состоит в том, что МГУ берут вдвое меньше и в качестве кислоты используют метакриловую кислоту (4.3 г, 0.05 моль в 10 мл ацетона). Получают 8.7 г соли (выход 82%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 6).

Синтез полимеров из синтезированных солей описан в примерах (П) 7-23.

Полимеры синтезируют методом радикальной полимеризации мономеров (М) в различных растворителях (Р, ДМСО - диметилсульфоксид) при 30-80°С под действием инициаторов (И) персульфата аммония (ПСА) и динитрила азобисизомасляной кислоты (ДАК) при концентрации мономеров 0.4 моль/л и концентрации инициатора (2.5-10)×10-3 моль/л и за определенное время (t). Раствор мономера и инициатора помещают в ампулу, трижды дегазируют, отпаивают и помещают в термостат. По окончании процесса полимер выделяют (В) высаживанием в ацетон (А), диализом (Д), фильтрованием (Ф). Экспериментальные данные по примерам 22-35 приведены в таблице 1 (К - конверсия, [η] - характеристическая вязкость, определяют при 30°С в 0.5 н водном растворе хлорида натрия в вискозиметре Убеллоде). Спектры ЯМР гомополимеров представлены на Фиг. 7-9.

Пример 21

Поли-МГГХ получают как в примере 10. Отличие состоит в том, что раствор МГГХ (13 г) и ПСА (0.29 г) в 200 мл дистиллированной воды помещают не в ампулу, а в колбу и продувают инертным газом аргоном. Колбу, снабженную обратным холодильником, помещают в термостат на 16 часов. Получают 11.6 г полимера (конверсия 89%), [η]=0.32 дл/г.

Пример 22

Поли-МГГХ получают как в примере 21. Отличие состоит в том, что раствор МГГХ и ПСА в дистиллированной воде в колбе не продувают инертным газом аргоном. Получают 8.7 г полимера (конверсия 67%), [η]=0.11 дл/г.

Пример 23

Поли-МГМА получают как в примере 21. Отличие в том, что раствор объемом 25 мл готовят из 2.13 г МГМА и 0.029 г ПСА и дистиллированной воды (остальное). Полимер образуется в виде осадка, который отфильтровывают и промывают на фильтре водой. Получают 1.55 г полимера (конверсия 73%).

Синтез сополимеров из синтезированных солей описан в примерах 24-29; их синтезируют методом радикальной сополимеризации сомономеров в различных растворителях под действием инициаторов ПСА и ДАК. Раствор сомономеров и инициатора помещают в ампулу, трижды дегазируют, отпаивают либо помещают в колбу, снабженную обратным холодильником, и продувают инертным газом аргоном. Раствор в ампуле или в колбе термостатируют. По окончании процесса сополимер выделяют высаживанием в ацетон, диализом или фильтрованием.

Пример 24

Помещают в колбу 32.8 г МГГХ и 70 мл концентрированного раствора ДАДМАХ (содержание мономера 32.4 г) в колбу, снабженную обратным холодильником, прибавляют дистиллированную воду до общего объема реакционной смеси 200 мл. После чего продувают аргоном, добавляют 0.228 г ПСА и помещают в термостат, нагретый до 60°С. Реакционную массу выдерживают при этой температуре 13 часов, после чего для выделения сополимера МГГХ и ДАДМАХ высаживают реакционный раствор в 1200 мл ацетона. Выпавший сополимер отфильтровывают и промывают ацетоном и эфиром. После чего сушат в вакуумном шкафу при температуре 50-55°С. Получают 49.7 г сополимера (конверсия 76%). [η]=0.95 дл/г. Содержание МГГХ в сополимере по данным ЯМР 69 мол. % (Фиг. 10).

Структурная формула

Пример 25

Сополимер МГТФА и ДАДМАХ получают как в примере 24. Отличие состоит в том, что раствор готовят объемом 50 мл из МГТФА (6.0 г), ДАДМАХ (4.0 г) и ПСА (0.114 г) в дистиллированной воде; колбу, помещают в термостат на 19 часов; по окончании процесса реакционный раствор диализуют относительно воды; содержимое диализного мешка упаривают и сушат в вакуумном шкафу при температуре 50-55°С. Получают 6.0 г сополимера (конверсия 60%). [η]=0.21 дл/г. Содержание МГТФА в сополимере по данным ЯМР 90 мол. % (Фиг. 11).

Структурная формула:

Пример 26

Сополимер МГТФА и ММА получают как в примере 24. Отличие состоит в том, что сополимеризацию проводят в ампуле, в качестве растворителя используют ацетон; МГТФА берут 4.8 г, в качестве второго сомономера используют ММА (2.0 г), в качестве инициатора используют ДАК (0.041 г) и время сополимеризации составляет 9 часов. Получают 4.0 г сополимера (конверсия 59%). [η]=0.14 дл/г. Содержание МГТФА в сополимере по данным ЯМР 60 мол. % (Фиг. 12).

Структурная формула:

Пример 27

Сополимер МГАц и ММА получают как в примере 26. Отличие состоит в том, что в качестве растворителя используют ДМСО; МГАц берут 3.7 г, время сополимеризации составляет 6 часов и сополимер выделяют высаживанием в ацетон. Получают 2.7 г сополимера (конверсия 47%). Содержание МГАц в сополимере по данным элементного анализа и ЯМР составляет 37 мол. % (Фиг. 13).

Структурная формула:

Пример 28

Сополимер МГАц и МАК получают как в примере 27. Отличие состоит в том, что в качестве второго сомономера используют МАК (1.72 г), время сополимеризации составляет 4 часов, сополимер в процессе сополимеризации выпадал в осадок и его отфильтровывают и промывают растворителем. Получают 4.5 г сополимера (конверсия 84%). Содержание МГАц в сополимере по данным элементного анализа составляет 40 мол. %. найдено: % N, 13.17, вычислено: % N, МГАц 22.45, МАК 0.00.

Пример 29

Сополимер МГГХ и МГТФА получают как в примере 24. Отличие состоит в том, что раствор готовят объемом 50 мл из МГГХ (1.64 г), МГТФА (2.41 г) и ПСА (0.057 г) в дистиллированной воде и реакционную массу в колбе перемешивают на магнитной мешалке 8 суток при комнатной температуре (20-25°С). Получают 2.76 г сополимера (конверсия 68%). [η]=1.27 дл/г. Содержание МГГХ в сополимере по данным элементного анализа 67 мол. %. Найдено, (N/C) сополимера = 0.618; вычислено: МГГХ - % N 25.68, % С 36.71; МГТФА - % N 17.42, % С 34.86.

Испытание биоцидных (бактерицидных) свойств

Минимальную подавляющую концентрацию (МПК) определяют по эффективности обеззараживания тест-поверхности (стекло), контаминированной тест-микроорганизмом (S. aureus штамм 906), способом протирания (норма расхода 100 мл/м2) при концентрации раствора 5% и ниже (снижение концентрации проводят последовательным двойным разбавлением) и времени выдержки 60 мин. Концентрацию, при которой не наблюдается роста бактерий или он минимален (менее 0.01%), можно считать минимальной подавляющей концентрацией (МПК).

Испытания подтверждают способность заявленных полимеров и сополимеров эффективно подавлять рост бактерий.


СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
Источник поступления информации: Роспатент

Показаны записи 61-70 из 141.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c18

Способ получения винилиденовых олефинов

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002652118
Дата охранного документа: 25.04.2018
Показаны записи 1-7 из 7.
27.06.2013
№216.012.508c

Способ повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя

Изобретение относится к способу повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя. Согласно способу экструдируют и затем прессуют полученный экструдат. После экструзии проводят рентгеноструктурный анализ РСА экструдата для...
Тип: Изобретение
Номер охранного документа: 0002486213
Дата охранного документа: 27.06.2013
25.08.2017
№217.015.acd9

Способ получения полимерного гидрогеля

Изобретение относится к области химии полимеров и медицины, а именно к способу получения полимерного гидрогеля, который может быть использован в качестве носителя биологически активных веществ при создании гидрогелевых покрытий для лечения ран и ожогов. Полимерный гидрогель получают...
Тип: Изобретение
Номер охранного документа: 0002612703
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.cd3b

Способ получения тонкодисперсного глинистого материала

Изобретение относится к обогащению полезных ископаемых и может быть использовано для получения особо чистых и/или модифицированных глин, приготовления буровых растворов. Технический результат заключается в максимальном удалении кластического материала от глинистых минералов. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002619622
Дата охранного документа: 17.05.2017
25.06.2018
№218.016.6757

Способ получения полимерного биодеградируемого материала

Изобретение относится к разработке способа создания биодеградируемого материала на базе первичного или вторичного полимерного сырья и может быть использовано для получения полимерных материалов, способных к ускоренному фотоокислительному старению. Способ получения полимерного биодеградируемого...
Тип: Изобретение
Номер охранного документа: 0002658415
Дата охранного документа: 21.06.2018
08.02.2019
№219.016.b80a

Нанокомпозиционный биоцидный материал

Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас.% неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас.%...
Тип: Изобретение
Номер охранного документа: 0002679147
Дата охранного документа: 06.02.2019
15.02.2019
№219.016.ba8f

Нанокомпозиционный полимерный биоцидный материал и способ его получения

Группа изобретений относится к области медицины. Предложен нанокомпозиционный полимерный биоцидный материал, содержащий: 5-10 мас.% модифицированной неорганической слоистой глины, полученной из суспензии, содержащей неорганическую слоистую глину и модификатор при их массовом соотношении от...
Тип: Изобретение
Номер охранного документа: 0002679804
Дата охранного документа: 13.02.2019
18.05.2019
№219.017.5b04

Способ получения эксфолиированного нанокомпозита

Изобретение относится к области создания композиционных полимерных материалов. Изобретение может быть использовано для создания материалов, применяемых, в частности, для упаковочных пленок с барьерными свойствами, оболочек для кабелей и других полимерных изделий, в машиностроении....
Тип: Изобретение
Номер охранного документа: 0002443728
Дата охранного документа: 27.02.2012
+ добавить свой РИД