×
15.10.2018
218.016.9247

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ОТКРЫТОЙ ПОРИСТОСТЬЮ ДЛЯ ВОССТАНОВЛЕНИЯ КОСТНОЙ ТКАНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, а именно к способу получения биодеградируемых композиционных материалов с открытой пористостью для восстановления костной ткани, включающему пропитку пористого керамического каркаса полимером, который отличается тем, что смесь гидроксиапатита с хлоридом натрия, добавленным в количестве 10-50 масс.%, прессуют с последующим спеканием при температуре 700-800 °С в течение 5 ч, выдерживают в дистиллированной воде до растворения хлорида натрия с получением пористого керамического каркаса с открытой пористостью, который далее высушивают и пропитывают раствором сополимера лактида и гликолида молекулярной массой 10-100 кДа при одновременном воздействии ультразвуком. 1 з.п. ф-лы, 4 пр.

Изобретение относится к способам получения биодеградируемых пористых полимерных композиционных материалов на основе гидроксиапатита (ГА) и сополимера лактида и гликолида (СЛГ), которые могут быть использованы для пластической реконструкции повреждённых плоских и смешанных костей.

Известен способ изготовления имплантатов, в котором материалы получают послойным электроплазменным напылением титана и гидроксиапатита на металлическую основу (патент RU 2529262; МПК A61L27/30, A61F2/02, C23C18/42; опубл. 27.09.2014). Недостатком способа является применение дорогостоящего специфического оборудования. Кроме того, такие материалы требуют замены и повторной операции, а из-за своей металлической основы способны вызывать аллергические реакции.

Известен способ получения пористых полимерных биодеградируемых изделий для регенерации костной ткани, в котором композиты из смеси полилактида и гидроксиапатита получают методом вакуумирования раствора в форме (патент RU 2327709; МПК C08G63/08, C08L101/16, A61L27/58; опубл. 27.06.2008). Способ позволяет добиться высокой пористости материала, однако для получения раствора используются высокотоксичные фторсодержащие растворители. Это усложняет процесс получения, т.к. требуется контроль удаления растворителя.

Наиболее близким по техническому решению и достигаемому эффекту является способ получения пористой керамики для лечения дефектов костной ткани из фосфатов кальция, в котором пористую керамику получают пропитыванием полиэтиленовой матрицы керамическим шликером ГА с последующим отжигом матрицы и спеканием керамики. В результате получается пористая гидроксиапатитная керамика с варьируемой пористостью (патент RU 2578435; МПК A61L27/10, A61L27/02, A61F2/28; опубл. 27.03.2016). Способ принят за прототип.

Использование чистой керамики не обеспечивает требуемой прочности и резорбируемости. Так же существенным недостатком является использование полиэтиленовых матриц, что значительно усложняет процесс получения материала.

Задача настоящего изобретения заключается в разработке способа получения биодеградируемых керамических материалов со сквозной объемной пористостью не ниже 30% на основе ГА, СЛГ и порообразующего агента (хлорида натрия). Основное преимущество метода заключается в упрощении создания и регулирования пористости c использованием простого порообразователя – хлорида натрия и стандартного лабораторного оборудования. Пропитка СЛГ позволяет улучшить механические характеристики, а так же повышает резорбируемость материала.

Поставленная задача решается за счет того, что пористую керамику получают прессованием гидроксиапатита и порообразующего агента хлорида натрия в количестве 10-50 масс.%, которые спекают при температуре 700 °С в течение 5 ч. с последующим растворением хлорида натрия и образованием открытой объемной пористости 30-45%, после чего пористую керамику пропитывают раствором сополимера лактида и гликолида молекулярной массой 10-100 кДа при одновременном воздействии ультразвуком, что позволяет добиться более равномерной пропитки.

Технический результат достигается за счет получения биосовместимого материала на основе покрытой СЛГ под действием ультразвука керамики на основе ГА с использованием нетоксичного вымываемого порообразователя, регулируя количество которого, можно контролировать пористость материала.

Костно-протезный материал накладывают на дефектную часть кости, заполняя её. Материал постепенно абсорбируется живым организмом и со временем полностью заменяется новой костной тканью. Процесс восстановления начинается с момента прикрепления клеток-остеобластов к поверхности протезного материала. При этом существенно, чтобы материал обладал высокой биосовместимостью и биорезорбируемостью. Подходящими свойствами обладают ГА и СЛГ в качестве основных компонентов. Получаемый материал имеет сквозные макроразмерные поры 50-300 мкм и общую объемную пористость более 30%, достаточную для пролиферации тканей.

Процесс получения материала включает три этапа:

Этап 1. Формирование каркаса смешением ГА и хлорида натрия в количестве от 10 до 50 масс.% до образования гомогенной смеси с последующим прессованием (P = 200 Бар). Сформированный каркас прокаливают в муфельной печи при температуре 700°С в течение 5 часов.

Этап 2. Формирование открытой пористости. Полученные на первом этапе каркасы выдерживают в дистиллированной воде 1 сутки с постоянной сменой воды через каждые 6 часов, после чего пористую гидроксиапатитную керамику высушивают в вакууме до полного удаления влаги.

Этап 3. Пропитка каркасов полимером. Сополимер растворяют в хлороформе для получения растворов полимера с разной молекулярной массой (10-100 кДа) и погружают каркасы в растворы СЛГ с их одновременной обработкой ультразвуком. Подобная обработка ультразвуком необходима для более полного удаления пузырьков воздуха из пористого каркаса с целью получения однородного покрытия и такая обработка позволяет существенно сокращает время пропитки.

Одними из вариантов реализаций способа могут быть следующие.

Пример 1. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 90:10 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700 - 800 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 10 кДа в хлороформе (концентрация = 1 г/мл). Высушенный каркас помещают в раствор с одновременной обработкой его ультразвуком (40 кГц) в течение 30 мин. при комнатной температуре. Через 30 минут материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 80 мкм; объёмная пористость – 39 %.

Пример 2. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 90:10 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 100 кДа в хлороформе (концентрация = 1 г/мл). Высушенный каркас помещают в раствор с одновременной обработкой его ультразвуком (40 кГц) в течение 30 мин. при комнатной температуре. Через 30 минут материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 50 мкм; объёмная пористость – 30 %.

Пример 3. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 50:50 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 10 кДа в хлороформе (концентрация = 1 г/мл). Высушенный каркас помещают в раствор с одновременной обработкой его ультразвуком (40 кГц) в течение 30 мин при комнатной температуре. Через 30 мин материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 200 мкм; объёмная пористость – 45 %.

Пример 4. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 90:10 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700-800 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 100 кДа в хлороформе с концентрацией 1 г/мл. Каркас помещают на 30 - 40 мин в раствор при комнатной температуре с одновременной обработкой его ультразвуком 40 кГц. Через 30-40 минут материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 155 мкм; объёмная пористость – 40 %.

Техническим результатом изобретения является получение пористого керамического материала на основе ГА с порообразователем NaCl, пропитанного СЛГ с размером пор 50-200 мкм и открытой пористостью 30-45%, которую можно контролировать, варьируя количество хлорида натрия.

Источник поступления информации: Роспатент

Показаны записи 111-120 из 173.
10.07.2018
№218.016.6f0e

Способ получения гликолида из модифицированных олигомеров гликолевой кислоты

Изобретение относится к способу получения гликолида, который является одним из исходных мономеров в реакциях с раскрытием цикла при получении ценных биодеградируемых полимеров, которые находят широкое применение в медицине, фармацевтике, пищевой промышленности и в современных аддитивных...
Тип: Изобретение
Номер охранного документа: 0002660652
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.6fbd

Способ органосохраняющего лечения инвазивного рака шейки матки

Изобретение относится к медицине, а именно к онкогинекологии. Выполняют радикальную трахелэктомию с формированием маточно-влагалищного анастомоза. Зону анастомоза обматывают сетчатым имплантатом, сплетенным в виде чулка из сверхэластичной никелид-титановой нити и фиксируют отдельными швами по...
Тип: Изобретение
Номер охранного документа: 0002661077
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7080

Способ регулирования клубнеобразования и продуктивности растений картофеля в условиях гидропоники

Изобретение относится к области сельского хозяйства, а именно к картофелеводству и семеноводству, а также к гидропонике. Способ включает обработку растений раствором биологически активного вещества. При этом в процессе адаптации к жидкой питательной среде корневую систему растений-регенерантов...
Тип: Изобретение
Номер охранного документа: 0002660918
Дата охранного документа: 11.07.2018
14.07.2018
№218.016.7149

Устройство для определения и разметки участков территории с химическим и радиоактивным заражением

Изобретение относится к устройствам мониторинга территории. Техническим результатом является обеспечение управления многофункциональным роботом с улучшенными функциональными возможностями. Устройство содержит робот, имеющий возможность перемещаться по наземной поверхности и в воздушном...
Тип: Изобретение
Номер охранного документа: 0002661295
Дата охранного документа: 13.07.2018
25.08.2018
№218.016.7f52

Способ получения фенотиазина

Изобретение относится к способу получения фенотиазина, заключающемуся в сплавлении дифениламина с элементарной серой в присутствии каталитических количеств йода с последующим охлаждением и перекристаллизацией, отличающемуся тем, что кипячение полученного осадка проводят в толуоле в течение...
Тип: Изобретение
Номер охранного документа: 0002664801
Дата охранного документа: 22.08.2018
05.09.2018
№218.016.82f1

Способ выделения пространственных изомеров n,n´-диметилгликолурила

Изобретение относится к способу выделения пространственных изомеров N,N’-диметилгликолурила, а именно 2,6-диметилгликолурила и 2,8-диметилгликолурила, включающему препаративное разделение реакционной смеси, полученной путем взаимодействия двух частей N-метилмочевины и одной части глиоксаля,...
Тип: Изобретение
Номер охранного документа: 0002665714
Дата охранного документа: 04.09.2018
05.09.2018
№218.016.82fd

Способ очистки 2-метилимидазола

Изобретение относится к области органической химии, а именно к способу очистки 2-метилимидазола, заключающемуся в перекристаллизации в три стадии путем приготовления пересыщенного раствора, его охлаждения до 3°С, фильтрации первой порции выпавших кристаллов, частичного упаривания воды,...
Тип: Изобретение
Номер охранного документа: 0002665713
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.8385

Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата

Изобретение относится к лазерной технике. Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакриалата содержит оптический источник накачки, органическую лазерно-активную среду из полиметилметакрилата и органического люминофора, растворенного в нем и нанесенного на...
Тип: Изобретение
Номер охранного документа: 0002666181
Дата охранного документа: 06.09.2018
09.09.2018
№218.016.8534

Способ очистки нефтепродуктов от серосодержащих и ароматических углеводородов

Изобретение относится к технологии облагораживания нефтехимического сырья экстракционным способом и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ очистки нефтепродуктов от сульфидов полимерами включает добавление раствора полимера к раствору...
Тип: Изобретение
Номер охранного документа: 0002666362
Дата охранного документа: 07.09.2018
09.09.2018
№218.016.855c

Способ приготовления адсорбента-осушителя

Изобретение относится к способам приготовления алюмооксидного осушителя влагосодержащих газов – углеводородного, природного и других. Способ приготовления включает стадию получения псевдобемитсодержащего гидроксида алюминия гидратацией активного гидроксиоксида алюминия в слабокислом растворе,...
Тип: Изобретение
Номер охранного документа: 0002666448
Дата охранного документа: 07.09.2018
Показаны записи 21-23 из 23.
02.11.2019
№219.017.dd9a

Способ получения трехслойного материала сталь х17н2 - v-4,9ti-4,8cr - сталь х17н2

Изобретение относится к области металлургии, а именно к способам получения сплавов на основе ванадия, и может быть использовано для получения высококачественных композиций на его основе с титаном и хромом, предназначенных для атомной энергетики. Способ получения трехслойного материала сталь...
Тип: Изобретение
Номер охранного документа: 0002704945
Дата охранного документа: 31.10.2019
19.11.2019
№219.017.e3ae

Способ получения адсорбента для осушки содержащих влагу газов

Изобретение относится к способу получения адсорбента для осушки содержащих влагу газов. Для получения адсорбента продукт центробежной термической активации гидраргиллита (ЦТА ГГ) в щелочном растворе, сушат, размалывают, пептизируют и пластифицируют в растворе азотной кислоты, формуют полученную...
Тип: Изобретение
Номер охранного документа: 0002706304
Дата охранного документа: 15.11.2019
03.06.2023
№223.018.761a

Способ получения фотокаталитического покрытия на основе диоксида титана

Изобретение относится к области химического синтеза титансодержащих пленкообразующих растворов. Формируемые из раствора покрытия обладают фотокаталитическими свойствами и могут быть использованы в качестве светочувствительных, самоочищающихся, фильтрующих и перераспределяющих излучение...
Тип: Изобретение
Номер охранного документа: 0002772590
Дата охранного документа: 23.05.2022
+ добавить свой РИД