×
11.10.2018
218.016.9082

Результат интеллектуальной деятельности: ПОРОГОВЫЙ ДАТЧИК ИНЕРЦИОННОГО ТИПА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения, а именно к пороговым датчикам инерционного типа, и предназначено для контроля за достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами, например, при транспортных авариях. Пороговый датчик инерционного типа содержит инерционное тело сферической формы, установленное с возможностью перемещения вдоль и под углом к оси датчика. Тело сферической формы поджато закрепленным в корпусе упругим элементом, выполненным в виде гибкого упругого стержня с отрицательной жесткостью на участке рабочего хода. Центральная часть гибкого стержня имеет большой упругий прогиб, а концы дополнительно оперты для образования симметричной формы изгиба стержня относительно оси датчика. Гибкий упругий стержень одновременно является подвижным электрическим контактом, взаимодействующим в конце рабочего хода с неподвижным электрическим контактом. Техническим результатом является повышение точности срабатывания датчика при действии ускорений, в том числе ударных импульсов произвольной формы, повышение устойчивости в условиях вибронагружений и расширение функциональных возможностей. 2 ил.

Изобретение относится к области приборостроения, а именно к пороговым датчикам инерционного типа.

Пороговые датчики инерционного типа используются для определения момента достижения ускорением, действующим на датчик, заданной величины. Пороговые датчики инерционного типа устанавливаются, как правило, на движущихся объектах для контроля достижения ускорениями пороговых уровней, в том числе при столкновении с другими объектами, например, при транспортных авариях. В этом случае происходит резкое изменение скорости движущегося объекта, и на датчик действует импульс ударного ускорения.

Основными характеристиками пороговых датчиков инерционного типа являются: порог по ускорению срабатывания, величина рабочего хода и диаграмма чувствительности. Порог по ускорению срабатывания обеспечивается путем поджатия инерционного тела к опорной поверхности с заданным усилием, отношение которого к массе инерционного тела и определяет величину порога. Движение инерционного тела начинается при достижении действующего ускорения заданной величины, определяемой порогом по ускорению срабатывания.

Сигнал о достижении заданного порога по ускорению срабатывания формируется, например, путем замыкания нормально разомкнутого электрического контакта при перемещении инерционного тела.

К основным характеристикам пороговых датчиков инерционного типа относится диаграмма чувствительности, показывающая, при каком значении ускорения начинается перемещение инерционного тела (или происходит замыкание электрического контакта) в зависимости от угла между осью датчика и вектором ускорения. Исходя из условия минимизации количества датчиков, устанавливаемых на движущийся объект, целесообразно, чтобы датчик мог срабатывать при действии ускорений, вектор которых может быть направлен как вдоль, так и под углами к оси датчика.

Одним из путей решения данной технической задачи является использование в датчике механизма с инерционным телом, имеющим сферическую форму, который расположен в углублении конической формы, выполненном, например, в корпусе датчика. В этом случае датчик имеет диаграмму чувствительности в виде конуса. Угол конуса диаграммы чувствительности зависит от угла конического углубления, в котором размещается сферическое инерционное тело.

Порог по ускорению срабатывания можно обеспечить разными способами. Инерционное тело может быть поджато к опорной поверхности (имеющей форму конуса) с помощью магнита. При этом в качестве подвижного электрического контакта может быть использован как сам шарик, что потребует присоединения к нему токовывода, так и отдельная деталь, которую перемещает шарик до контакта с неподвижным электрическим контактом.

Известна конструкция датчика (см. патент ФРГ DE 3313033, МПК H01H 35/14, опубл. 02.08.1984 г.), в которой шарик поджат к конической опорной поверхности магнитом, а при перемещении в конце рабочего хода шарик взаимодействует с деталью, которая является подвижным электрическим контактом. Шарик перемещает подвижный электрический контакт до соприкосновения с неподвижным электрическим контактом, благодаря чему происходит замыкание электрической цепи.

В том случае, когда для удержания инерционного тела используется магнит, величина силы поджатия уменьшается в зависимости от перемещения инерционного тела, поэтому обобщенный коэффициент жесткости упругого элемента получается отрицательным. Так как коэффициент жесткости упругого элемента отрицательный, датчик представляет собой неколебательную динамическую систему, у которой в условиях вибронагружений не происходит возникновения резонанса, и, соответственно, не происходит колебаний чувствительного элемента приводящих к замыканию контакта, то есть к ложному срабатыванию датчика. Тем не менее, недостатком подобных конструкций является влияние процесса замыкания электрического контакта на точность порога по ускорению срабатывания датчика. Вследствие того, что подвижный электрический контакт должен обладать собственной устойчивостью к ускорениям, инерционному телу необходимо преодолеть определенное усилие для обеспечения замыкания электрического контакта. При этом усилие начального поджатия инерционного тела, обеспечиваемое магнитом, и усилие, которое необходимо преодолеть инерционному телу для замыкания электрического контакта, обеспечиваются разными деталями датчика, что усложняет процесс настройки порога по ускорению срабатывания. Для исключения влияния процесса замыкания электрического контакта на точность порога по ускорению срабатывания целесообразно, чтобы шарик являлся подвижным электрическим контактом, или функции подвижного электрического контакта и упругого элемента были совмещены в одной детали.

Так, например, известен инерционный датчик (см. патент США №3453405, МПК H01H 35/02, опубл. 01.07.69 г.), содержащий корпус, инерционное тело сферической формы, установленное с возможностью перемещения вдоль и под углом к оси датчика и поджатое с помощью упругого элемента к конической опоре в корпусе. Под действием ускорения, величина которого превышает порог по ускорению срабатывания, а вектор может быть направлен как вдоль, так и под углом к оси датчика, инерционное тело перемещается и замыкает электрический контакт. Основным недостатком аналога является ненадежное замыкание электрического контакта при работе датчика вследствие того, что токоподвод к подвижному электрическому контакту - инерционному телу (шарику) - осуществляется через упругий элемент - пружину, которая поджимает инерционное тело для обеспечения требуемого порога по ускорению срабатывания. В этом случае для надежного замыкания электрического контакта необходимо обеспечить дополнительную гальваническую связь в местах контактирования пружины с токовыводом и инерционным телом, что может существенно усложнить процесс изготовления и сборки датчика.

Инерционный датчик, в котором инерционное тело - шарик - выполняет функцию только инерционного тела, а подвижный электрический контакт является отдельной деталью, одновременно выполняющей роль упругого элемента, известен из описания к патенту США №5237135, МПК H01H 35/14, опубл. 17.08.93 г., который выбран в качестве прототипа. В данной конструкции шарик расположен в коническом углублении, выполненном в корпусе датчика, с возможностью перемещения как вдоль, так и под углом к оси датчика, а в качестве упругого элемента, закрепленного в корпусе, используются сформированные путем вырезов на пластине консольные балки (8 штук), которые поджимают шарик к конической опоре и одновременно являются подвижными электрическими контактами. К главным недостаткам прототипа можно отнести то, что консольные балки, нагруженные на конце шариком, образуют динамическую систему, которая является колебательной. Во-первых, реакция колебательной системы на ударные импульсы произвольной формы может отличаться в зависимости от темпа нарастания ускорения. И, во-вторых, так как любая механическая колебательная система характеризуется наличием частот, при которых возможно возникновение резонанса, то в условиях вибронагружений возникновение резонанса может приводить к дребезгу упругих элементов и, соответственно, потере устойчивости датчика и ложным срабатываниям (Ю.И. Иориш, Виброметрия, ГНТИ, Москва, 1963 г., стр. 463).

Кроме того, диаграмма чувствительности датчика-прототипа неравномерная (особенно при действии ускорений в направлении, перпендикулярном оси датчика), так как в зависимости от направления вектора ускорения задействуются одна или две консольные балки.

Решаемой задачей является создание порогового датчика инерционного типа, надежно срабатывающего при ускорениях, действующих вдоль и под углом к оси датчика, при условии превышения порога по ускорению срабатывания датчика в соответствии с диаграммой чувствительности, в том числе при действии ударных импульсов произвольной формы.

Достигаемым техническим результатом является повышение точности срабатывания датчика при действии ускорений, в том числе ударных импульсов произвольной формы, повышении устойчивости в условиях вибронагружений и расширении функциональных возможностей.

Для достижения технического результата в пороговом датчике инерционного типа, содержащем размещенные в корпусе сферическое инерционное тело, установленное с возможностью перемещения вдоль и под углом к оси датчика, поджатое с помощью закрепленного в корпусе упругого элемента, являющегося подвижным контактом, и неподвижный контакт, новым является то, что упругий элемент выполнен в виде гибкого упругого стержня с отрицательной жесткостью на участке рабочего хода, при этом центральная часть стержня имеет большой упругий прогиб, а концы дополнительно оперты для образования симметричной формы изгиба относительно оси датчика.

Выполнение упругого элемента в виде гибкого упругого стержня (см. Е.И. Попов, Теория и расчет гибких упругих стержней, М.: Наука, 1986 г., стр. 105), благодаря формированию начального прогиба стержня при закреплении его концов и большому прогибу центральной части, обеспечивает силовую характеристику (зависимость обобщенной восстанавливающей силы от величины прогиба центральной части стержня), на которой есть участок, где происходит уменьшение силы, но при этом вектор обобщенной восстанавливающей силы не меняет свое направление. Указанный участок силовой характеристики и используется для обеспечения требуемого порога по ускорению срабатывания. Для этого перед настройкой требуемого порога по ускорению срабатывания осуществляется предварительное перемещение центральной части гибкого стержня вместе с установленным в коническом углублении инерционным телом (шариком) на расчетную величину для того, чтобы в начале движения шарика величина восстанавливающей силы была больше, чем в конце рабочего хода (в момент замыкания электрического контакта). После этого производится точная настройка порога по ускорению срабатывания датчика с использованием центробежной установки.

Так как величина обобщенной восстанавливающей силы в зависимости от перемещения инерционного тела уменьшается, обобщенный коэффициент жесткости упругого элемента - гибкого стержня - на участке рабочего хода имеет отрицательное значение. Поэтому динамическая система датчика является неколебательной, благодаря чему достигается повышение точности срабатывания датчика при действии ускорений, в том числе ударных импульсов произвольной формы, а также повышение устойчивости датчика в условиях вибронагружений.

Для обеспечения устойчивой, симметричной относительно оси датчика, формы гибкого стержня при большом упругом прогибе его центральной части, концы стержня дополнительно оперты на поверхности, которые могут иметь различную форму - как плоскую, так и криволинейную. Они могут быть сформированы непосредственно на внутренней поверхности корпуса датчика или быть выполнены на отдельных деталях, входящих в конструкцию датчика.

Центральная часто гибкого стержня, обращенная к неподвижному электрическому контакту, при перемещении на величину рабочего хода контактирует с неподвижным электрическим контактом. Благодаря выпуклой форме центральной части гибкого стержня (подвижного электрического контакта) обеспечивается необходимая величина контактного давления, достаточная для надежного замыкания электрической цепи. Опорная поверхность, к которой поджимается шарик, имеет коническую форму. В зависимости от угла конуса можно формировать различные виды диаграмм чувствительности, тем самым расширяя функциональные возможности датчика.

На фиг. 1 изображена конструкция порогового датчика инерционного типа; на фиг. 2 - вид силовой характеристики упругого элемента.

Пороговый датчик инерционного типа содержит сферическое инерционное тело - шарик 1, установленное с возможностью перемещения вдоль и под углом к оси датчика. Шарик 1 поджат к опоре 4 закрепленным в корпусе 5 упругим элементом - гибким стержнем 2, являющимся одновременно подвижным электрическим контактом. Упругий элемент 2 выполнен в виде гибкого стержня с отрицательной жесткостью на участке рабочего хода Δ. Неподвижный электрический контакт 3 размещен в зоне прогиба центральной части на расстоянии Δ от упругого элемента 2. Данное расстояние и является величиной межконтактного зазора. Опора 4 установлена в корпусе 5 датчика с возможностью перемещения, например, по резьбе, для обеспечения предварительного смещения центральной части гибкого стержня и для точной настройки порога по ускорению срабатывания. Для подключения датчика к регистрирующей аппаратуре используются токовыводы 6 и 7 от упругого элемента 2 и неподвижного электрического контакта 3 соответственно.

В качестве инерционного тела целесообразно использовать стандартный шарик необходимого диаметра, изготовленный из коррозионно-стойкого немагнитного сплава. При необходимости шарик может быть изготовлен из материалов, имеющих малую плотность - полимеры, стекло и т.п., а также может выполняться пустотелым.

Упругий элемент изготавливается из коррозионно-стойкого немагнитного электропроводящего сплава, например, сплава 36НХТЮ. Вогнутый участок в центре упругого элемента служит для позиционирования инерционного тела (шарика) и, кроме того, делает центральную часть гибкого стержня более жесткой, благодаря чему она перемещается по заданному закону. Неподвижный электрический контакт изготавливается из электропроводящего металла. В качестве токовыводов используется провод, например, типа МСЭ (ТУ 16-505.083-78).

Силовая характеристика упругого элемента 2 представляет собой зависимость силы F, генерируемой гибким стержнем, от перемещения Y ее центральной части. Как показано на фиг. 2, силовая характеристика имеет участок А-Б, на котором происходит уменьшение величины восстанавливающей силы F. То есть в начале движения шарика величина восстанавливающей силы F (точка А на силовой характеристике) больше, чем в конце рабочего хода - в момент замыкания электрического контакта (точка Б на силовой характеристике). Величина рабочего хода Δ, как правило, выбирается минимально возможной, но с учетом обеспечения отсутствия электрического пробоя между контактами.

Датчик работает следующим образом. Под действием ускорения, величина которого превышает порог по ускорению срабатывания, а вектор может быть направлен относительно оси датчика под разными углами, шарик 1 перемещает центральную часть упругого элемента 2 до соприкосновения с неподвижным электрическим контактом 3. При этом происходит замыкание электрической цепи. Момент замыкания электрического контакта, который регистрируется аппаратурой, свидетельствует о достижении ускорением заданной величины, соответствующей порогу по ускорению срабатывания датчика.

Проведенные испытания макетных образцов инерционного порогового датчика, выполненного в соответствии с изобретением, подтвердили достижение заявляемого технического результата.

Пороговый датчик инерционного типа, содержащий размещенные в корпусе сферическое инерционное тело, установленное с возможностью перемещения вдоль и под углом к оси датчика, поджатое с помощью закрепленного в корпусе упругого элемента, являющегося подвижным контактом, и неподвижный контакт, отличающийся тем, что упругий элемент выполнен в виде гибкого упругого стержня с отрицательной жесткостью на участке рабочего хода, при этом центральной части стержня, взаимодействующей с инерционным телом, придана выпуклая в сторону неподвижного контакта форма, а концы стержня дополнительно оперты на внутренние поверхности корпуса датчика для образования симметричной формы изгиба стержня относительно оси датчика.
ПОРОГОВЫЙ ДАТЧИК ИНЕРЦИОННОГО ТИПА
ПОРОГОВЫЙ ДАТЧИК ИНЕРЦИОННОГО ТИПА
Источник поступления информации: Роспатент

Показаны записи 411-420 из 994.
25.08.2017
№217.015.be34

Способ получения смесевого пластичного взрывчатого вещества

Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого...
Тип: Изобретение
Номер охранного документа: 0002616729
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be86

Способ изготовления фотоэлектронного прибора

Изобретение относится к электровакуумной технике, к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002616973
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c0b2

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии и может быть использовано при изготовлении датчиков для определения положения движущихся объектов, магнитометров, электронных компасов для систем навигации и т.д. Технический результат: повышение разрешающей способности за счет...
Тип: Изобретение
Номер охранного документа: 0002617454
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c1c4

Способ получения протонных изображений

Изобретение относится к области протонной радиографии, в частности к способам регистрации оптических изображений, сформированных с помощью протонного излучения. Способ получения протонных изображений включает в себя этапы, на которых осуществляют пропуск протонного пучка через область...
Тип: Изобретение
Номер охранного документа: 0002617722
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c1e8

Способ определения излучательной способности твердых материалов и устройство для его осуществления

Изобретение относится к теплофизике и может быть использовано для определения радиационных характеристик поверхностей и покрытий твердых тел. В отличие от известного способа определения излучательной способности твердых материалов, заключающегося в том, что воздействуют на исследуемый образец...
Тип: Изобретение
Номер охранного документа: 0002617725
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c23e

Способ регистрации фазового перехода в материале

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах. Заявлен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором давление...
Тип: Изобретение
Номер охранного документа: 0002617729
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c240

Логарифмический контроллер защиты многопролетных волоконно-оптических линий

Изобретение относится к контроллерам защиты многопролетных волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве технического средства защиты информации (ТСЗИ) ограниченного доступа в многопролетных волоконно-оптических линиях...
Тип: Изобретение
Номер охранного документа: 0002617726
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c256

Способ диффузионной сварки трубчатых переходников титан - нержавеющая сталь

Изобретение может быть использовано для получения диффузионной сваркой в вакууме трубчатых переходников титан - нержавеющая сталь. Телескопически соединяют трубчатую деталь переходника из титана и расположенную снаружи нее трубчатую деталь переходника из нержавеющей стали, на внутренней...
Тип: Изобретение
Номер охранного документа: 0002617807
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c282

Способ анализа вещества термоаналитическим методом

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерений и контроля термических характеристик веществ и материалов, и может быть использовано для идентификации вещества при принятии мер по обеспечению пожарной и промышленной безопасности. Способ...
Тип: Изобретение
Номер охранного документа: 0002617730
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c62f

Способ взрывной резки металлических конструкций

Изобретение относится к взрывным работам и может быть использовано для резки корпусных конструкций сложной конфигурации. Способ включает резку в два этапа. Первый этап - выполнение на разрезаемой конструкции ослабленного сечения в виде надреза, глубина которого составляет не менее 1/6 толщины...
Тип: Изобретение
Номер охранного документа: 0002618676
Дата охранного документа: 10.05.2017
Показаны записи 1-9 из 9.
20.07.2014
№216.012.df15

Инерционный датчик

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия, и предназначено для контроля за достижением ускорениями, действующими на объект при столкновении с другими объектами, например, при транспортных авариях, пороговых уровней. Инерционный датчик...
Тип: Изобретение
Номер охранного документа: 0002522895
Дата охранного документа: 20.07.2014
10.04.2016
№216.015.2ffd

Датчик предельных ускорений

Изобретение относится к области приборостроения, а именно - к инерционным датчикам порогового действия, осуществляющим регистрацию и запоминание в автономном режиме (без источника электропитания) информации о достижении ускорением заданных предельных уровней. Датчик предельных ускорений...
Тип: Изобретение
Номер охранного документа: 0002580902
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3339

Упругий элемент липатова

Изобретение относится к области машиностроения. Упругий элемент выполнен в виде гибкого упругого стержня с закрепленными концами. Центральная часть имеет возможность больших упругих перемещений. Заданная форма предварительно придана упругой линии стержня путем частичного или полного прилегания...
Тип: Изобретение
Номер охранного документа: 0002582324
Дата охранного документа: 20.04.2016
09.05.2019
№219.017.501a

Инерционный пороговый датчик

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия, и предназначено для контроля за достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами, например, при транспортных авариях. Инерционный...
Тип: Изобретение
Номер охранного документа: 0002443979
Дата охранного документа: 27.02.2012
09.06.2019
№219.017.7d00

Контактный датчик цели

Изобретение относится к области военной техники и предназначено для выдачи команды на подрыв любых типов боеприпасов при их соударении с целью. Технический результат - повышение надежности замыкания контактов датчика, упрощение конструкции, повышение помехозащищенности, а также в расширении...
Тип: Изобретение
Номер охранного документа: 0002416780
Дата охранного документа: 20.04.2011
19.06.2019
№219.017.8802

Электрический соединитель

Изобретение относится к области электротехники и автоматики. Электрический соединитель состоит из розеточной и вилочной частей. Одна из них содержит основание и соединенный с ним эластичным элементом подвижный корпус. Эластичный элемент выполнен в виде ленты с несколькими рядами продольных...
Тип: Изобретение
Номер охранного документа: 0002306646
Дата охранного документа: 20.09.2007
03.07.2020
№220.018.2dee

Контактная пара электрического соединителя

Изобретение относится к электротехнике, в частности к электрическим соединителям, а также может быть использовано в других электроразъемных устройствах. Контактная пара электрического соединителя предназначена для соединения электрических цепей и, как правило, состоит из двух частей - штыря и...
Тип: Изобретение
Номер охранного документа: 0002725143
Дата охранного документа: 30.06.2020
31.07.2020
№220.018.3ab7

Контактный датчик цели

Изобретение относится к области военной техники и предназначено для выдачи команды на подрыв любых типов боеприпасов при их соударении с целью. Техническим результатом заявляемого изобретения является гарантированная выдача команды на подрыв боеприпаса при его соударении с целью как при...
Тип: Изобретение
Номер охранного документа: 0002728012
Дата охранного документа: 28.07.2020
15.05.2023
№223.018.5825

Пороговый датчик инерционного типа

Изобретение относится к области приборостроения, а именно к пороговым датчикам инерционного типа. Технический результат заключается в повышении точности срабатывания датчика при действии вдоль его оси ускорения, величина которого превышает порог по ускорению срабатывания, в повышении надежности...
Тип: Изобретение
Номер охранного документа: 0002768012
Дата охранного документа: 23.03.2022
+ добавить свой РИД