×
25.08.2017
217.015.c23e

СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах. Заявлен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом используют газообразную среду, инертную по отношению к исследуемому материалу. Техническим результатом является повышение точности и чувствительности регистрации фазового перехода, простоты и компактности оборудования, а также возможность определять фазовые переходы при воздействии высоких давлений и температур и достичь малой инерционности системы измерений. 1 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности к способу определения протекания фазовых переходов в металлах и сплавах. В общем случае, способ может быть применен для исследования наличия и характеристик фазовых переходов в любых материалах.

Исторически первыми приборами были рычажные (механические) дилатометры, в которых малое изменение размера образца через систему рычагов вызывало многократно увеличенное смещение стрелки относительно шкалы (Дилатометр // Энциклопедический словарь Брокгауза и Ефрона. В 86 томах. СПб. 1890-1907). В настоящее время широко используются дилатометры, основанные на оптико-механическом, емкостном, индукционном, интерференционном, рентгеновском или радиорезонансном способах определения изменения объема тел при исследованиях протекания фазовых переходов (Дилатометрия // Большая Российская энциклопедия. В 30 томах. Том 8. - М.: Большая Российская энциклопедия, 2007. С. 748-749). Данные виды дилатометров не позволяют работать с образцами материалов под высоким давлением.

Существуют и другие способы определения протекания фазовых переходов. За прототип, как наиболее близкий по технической сущности, взят способ регистрации фазовых переходов в материалах при воздействии на материал давления и температуры, где регистрация фазового перехода осуществляется по изменению температуры образца из исследуемого материала ввиду изменения свойств образца при постоянном или меняющемся тепловом потоке, протекающем через пуансоны и образец. (А.С. СССР №1371198 A1, G01N 25/02, опубл. 15.04.1994. Щенников В.В. Способ регистрации фазового перехода).

Однако данный способ обладает следующими недостатками. В случае низких прочностных свойств исследуемого материала при высоких давлениях необходимо использовать дополнительную оснастку, которая позволяет сохранить форму образца из исследуемого материала (предотвращает сильные деформации, а также выдавливание материала в зазоры между оснасткой и пуансонами). Выбранный в прототипе способ создания необходимого давления сопряжен с использованием громоздкого оборудования. Изменение температуры в данном способе является следствием изменения теплопроводности материала при протекании фазового перехода, что с учетом тепловой инертности системы и погрешности измерения температуры может давать низкую чувствительность данного способа.

Задачей настоящего изобретения является повышение точности и чувствительности регистрации фазового перехода в материале при одновременном упрощении способа.

При использовании изобретения достигается следующий технический результат:

- повышается точность и чувствительность регистрации фазового перехода;

- появляется возможность использовать относительно простое, компактное и дешевое оборудование;

- достигается возможность определять характеристики фазовых переходов при равномерном всестороннем сжатии при больших давлениях и при высоких температурах, что повышает точность регистрации;

- достигается малая инерционность системы измерений.

Для решения указанной задачи и достижения технического результата предложен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором, согласно изобретению, давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом необходимо использовать газообразную среду, инертную по отношению к исследуемому материалу.

Суть изобретения заключается в следующем. Образец из исследуемого материала помещается внутрь высокопрочной исследовательской ячейки, в которую после герметизации подается газ под давлением. Далее ячейка равномерно нагревается со скоростями, которые обеспечивают малые градиенты температуры по объему исследуемого образца, при этом давление газа внутри ячейки возрастает согласно уравнению состояния для используемого газа. Давление газа увеличивается преимущественно из-за увеличения температуры газа и лишь немного из-за изменения объема внутренней полости вследствие температурного расширения материала образца и материала ячейки. При достижении температуры и давления фазового перехода материал образца меняет объем, следствием чего является дополнительное изменение давления газа внутри ячейки. В случае увеличения объема образца свободный объем ячейки уменьшается и давление возрастает, а в случае уменьшения объема образца свободный объем ячейки увеличивается и давление уменьшается. Такое изменение давления также описывается уравнением состояния данного газа, но зависит от изменения объема, занимаемого газом. Поскольку во время фазового перехода нагрев осуществляется медленно, то вклад увеличения температуры в изменение давления незначителен (меньше чем изменение давления от изменения объема) и поддается оценке с помощью уравнения состояния. После протекания фазового перехода объем образца стабилизируется, и при дальнейшем медленном равномерном нагревании ячейки с образцом будет снова происходить изменение давления газа преимущественно за счет изменения температуры. В результате регистрируются кривые изменения давления и температуры от времени, из которых, зная уравнение состояния используемого газа, можно выделить изменение давления, связанное с изменением температуры газа, изменением давления, обусловленного изменением объема занятого газом вследствие теплового расширения материала образца и материала ячейки, и изменение давления, обусловленное значительным изменением объема образца во время фазового перехода. Это позволяет в дальнейшем, после обработки данных, указать температуру и давление начала фазового перехода, скорость протекания фазового перехода, изменение объема материала при протекании фазового перехода.

Для определения фазового перехода по полученным данным строим график зависимости изменения давления от температуры Р(Т). В обычных условиях рост давления газа пропорционален росту температуры, т.е. кривая Р(Т) имеет практически линейную зависимость (наклон незначительно меняется при изменении давления ввиду изменения сжимаемости газа). Любые значительные отклонения от этой зависимости свидетельствуют об изменениях в материале образца. Продифференцировав кривую Р(Т) по температуре, т.е. перестроив ее в координатах dP/dT, более точно можно определить температуру начала и окончания фазового перехода, а также кинетику фазового перехода. Пример кривых Р(Т) и dP/dT для поиска фазового перехода приведен на фиг. 4. На продифференцированной кривой четко выражен пик, соответствующий фазовому переходу.

Газ, используемый в исследованиях, желательно выбирать из условий

- химической инертности по отношению к исследуемому материалу и конструкционным материалам, примененным в конструкции ячейки;

- малой растворимости и низкого коэффициента диффузии в материалах;

- требуемой величины сжимаемости газа в используемой области давлений и температур;

- наличия достаточно точного уравнения состояния газа в используемой области давлений и температур либо точных экспериментальных данных по сжимаемости газа.

В заявляемом способе создаваемое давление газа воздействует на материал образца со всех сторон, поэтому прочностные характеристики исследуемого материала не важны. Современное оборудование для создания давления газа до нескольких тысяч атмосфер является достаточно компактным (использование термокомпрессоров, газогенераторов). Регистрация фазовых переходов в данном изобретении основана на регистрации изменения давления газовой среды, где основная погрешность измерений определяется используемым датчиком давления (при условии герметичности ячейки, малых деформациях внутренней полости ячейки при воздействии высокого давления) и погрешностью используемого уравнения состояния (менее 0,5% для газов, широко используемых в науке и технике). Инерция такой системы регистрации крайне мала.

Ha фигуре 1 приведена одна из возможных конструктивных схем исследовательской ячейки.

На фигуре 2 приведена одна из возможных газовых схем установки для проведения регистрации фазовых переходов в материале.

На фигуре 3 показан типичный график изменения давления и температуры от времени с указанием, какие процессы определяют изменение давления. График получен при математическом моделировании процессов.

На фигуре 4 приведены экспериментальный график зависимости давления от температуры и кривая, полученная при дифференцировании.

На указанных чертежах использованы следующие обозначения.

На фиг. 1: 1 - штуцер для подачи газа; 2 - нагреватель; 3 - теплоизоляция; 4 - крышка; 5 - место для образца из исследуемого материала; 6 - место установки термопары; 7 - уплотнение; 8 - основание; 9 - резьбовое соединение.

На фиг. 2: 10 - источник газа с нагревателем; 11 - исследовательская ячейка, в которую помещается образец; 12 - вентиль источника газа; 13 - вентиль исследовательской ячейки; 14 - вентиль коммуникации отвода газа (на вакуумный пост и в атмосферу); 15 - коммуникация отвода газа в атмосферу; 16 - датчик для контроля давления газа в источнике газа; 17 - датчик для контроля давления газа в исследовательской ячейке.

На фиг. 3: 18 - фрагменты графика давления, где рост давления преимущественно вызван ростом температуры; 19 - фрагмент графика давления, где рост давления преимущественно вызван изменением объема образца вследствие фазового перехода; 20 - график изменения температуры от времени; 21 - график изменения давления от времени.

Использование способа заключается в следующем.

Внутрь основания 8 в место установки термопары 6 (фиг. 1) устанавливается термопара или платиновый датчик температуры с термопастой для улучшения теплопроводности. Основание 8 крепится к рабочей поверхности. На основание 8 устанавливается уплотнение 7. Устанавливается исследуемый образец на основание 8 так, чтобы после сборки он оказался в полости между крышкой 4 и основанием 8 (место для образца 5). После чего крышку 4 закручивают (резьбовое соединение 9) относительно основания 8 до резкого возрастания усилия. На крышку 4 устанавливаются нагреватель 2 и теплоизоляция 3. Собранная исследовательская ячейка 11 (фиг. 2) стыкуется к вентилю 13 установки подачи газа посредством штуцера 1 (фиг. 1).

Эксперимент начинается с вакуумирования (при необходимости удалить воздух или иную газовую среду, в которой производилась сборка ячейки) и проверки герметичности собранной ячейки (необходимо для дальнейшей корректности получаемых результатов). Для проверки герметичности могут использоваться различные способы, в частности подача давления газа и выдержка в течение относительно длительного времени. При этом падение давления газа по датчику 17 указывает на наличие течи. После проверки герметичности в ячейке 11 (фиг. 2) создаются условия, соответствующие началу эксперимента, т.е. подается газ под необходимым давлением с источника 10 через вентили 12 и 13 в исследовательскую ячейку 11, вентиль 13 закрывается, и ячейка 11 с образцом нагревается нагревателем 2 (фиг. 1) до нужной температуры (до температуры области, где предполагается наличие фазового перехода). Давление газа в исследовательской ячейке 11 контролируется по датчику давления 17. Далее обеспечивается медленный равномерный нагрев ячейки 11 с образцом в предполагаемой области фазового перехода. При этом регистрируются давление газа и температура (см. фиг. 3). Изменению давления газа от температуры соответствуют более пологие участки 18 графика давления, а в области фазового перехода участок графика 19 более крутой. Сопоставление графиков изменения от времени температуры 20 и давления 21 позволяет определить температуру и давление, при которых происходит фазовый переход, а также длительность по времени. После завершения эксперимента ячейка 11 охлаждается, газ стравливается через вентили 13 и 14 в атмосферу по коммуникации 15, образец извлекается. Полученные экспериментальные данные (фиг. 4) подтверждают результаты математического моделирования (фиг. 3), где смоделировано изменение давления в зависимости от температуры и изменения свободного объема ячейки при фазовом переходе материала образца для заявляемого способа регистрации фазовых переходов.

Данный способ позволяет изучать фазовые переходы в различных веществах и материалах (в галлии, церии, олове, стронции, лантане и др., а также в различных сплавах) при давлениях до нескольких тысяч атмосфер и температурах до 500-600 градусов Цельсия (при использовании в конструкции ячейки специальных сталей). Температурный диапазон может быть расширен при использовании жаропрочных конструкционных материалов, что позволяет данным способом изучать фазовые переходы при высоких температурах (в титане, цирконии и др.).

Преимущества данного способа определения фазовых диаграмм заключаются в относительной простоте и компактности исполнения оборудования, его дешевизне по сравнению с оборудованием для ряда дилатометрических методов. Наиболее важное преимущество заявляемого способа заключается в повышении точности и чувствительности регистрации фазового перехода, возможности определять фазовые переходы при воздействии больших давлений и температур на материал, равномерности воздействия давления на образец из изучаемого материала, малой инерционности системы измерения.


СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 499.
27.05.2013
№216.012.455b

Устройство для измерения компонент вектора плотности тока в проводящих средах

Изобретение относится к электроизмерительной технике и может быть использовано для измерения составляющих плотности электрического тока в проводящих средах. Сущность: устройство состоит из установленных взаимно ортогонально трех датчиков 1. Датчики жестко закреплены в корпусе 2, выполненном в...
Тип: Изобретение
Номер охранного документа: 0002483332
Дата охранного документа: 27.05.2013
20.04.2015
№216.013.441a

Способ герметизации оптического волокна в корпусе

Изобретение относится к области приборостроения и касается способа герметизации оптического волокна в корпусе. Способ заключается в нанесении анаэробного клея на место герметизации оптического волокна с последующим введением волокна в сквозное отверстие корпуса детали. После отверждения клея...
Тип: Изобретение
Номер охранного документа: 0002548932
Дата охранного документа: 20.04.2015
10.04.2016
№216.015.2e50

Способ приготовления компактного гидрида титана

Изобретение относится к водородной технологии и может быть использовано в качестве элемента биологической защиты ядерных энергетических установок. Образец титана подвергают активации с последующим насыщением водородом. Насыщение проводят при 580-670°C, скорости подачи водорода к образцу не...
Тип: Изобретение
Номер охранного документа: 0002579580
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.39c1

Бронезащита

Изобретение относится к области вооружений и военной техники, в частности к броневым конструкциям, которые могут быть применены в индивидуальных и транспортных средствах для защиты от воздействия пуль стрелкового оружия и высокоэнергетических осколков поля боя, а также в атомной и других...
Тип: Изобретение
Номер охранного документа: 0002582463
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5485

Кольцевая щелевая антенна

Изобретение относится к антенной технике. Кольцевая щелевая антенна содержит коаксиально расположенные полые металлические внешний и внутренний цилиндры, проводящее кольцо, первый и второй коаксиальные соединители, первую и вторую точки питания, первый и второй проводящие штыри. Проводящее...
Тип: Изобретение
Номер охранного документа: 0002593422
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.560c

Контейнер для транспортирования и хранения отработавшего ядерного топлива

Изобретение относится к контейнерам и предназначено для транспортирования и длительного хранения отработавшего ядерного топлива (ОЯТ) в виде отработавших тепловыделяющих сборок (ОТВС). Контейнер для транспортирования ОЯТ содержит металлический корпус с нижним комингсом с закрепленными на нем...
Тип: Изобретение
Номер охранного документа: 0002593273
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5646

Чехол для размещения и хранения отработавших тепловыделяющих сборок реактора ввэр-1000

Изобретение относится к ядерной технике, а именно к дистанционирующим устройствам, в которых размещаются отработавшие тепловыделяющие сборки реактора ВВЭР-1000, во время их транспортирования и хранения в контейнерах. Чехол для размещения и хранения отработавших тепловыделяющих сборок содержит...
Тип: Изобретение
Номер охранного документа: 0002593388
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c94

Способ определения динамического коэффициента внешнего трения

Использование: механические испытания материалов, в частности определение динамического коэффициента внешнего трения. Для определения динамического коэффициента внешнего трения используются два образца, нижний из которых закрепляют на платформе, способной поворачиваться относительно...
Тип: Изобретение
Номер охранного документа: 0002589955
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d04

Способ контроля хода выполнения программы пользователя, исполняющейся на вычислительных узлах вычислительной системы

Изобретение относится к области вычислительной техники, в частности к организации контроля хода выполнения программы, выполняющейся на вычислительной системе, вычислительном кластере. Технический результат - эффективное использование программы пользователя, что обеспечивает своевременное...
Тип: Изобретение
Номер охранного документа: 0002591020
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e6c

Способ определения характеристик срабатывания детонирующего устройства

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента...
Тип: Изобретение
Номер охранного документа: 0002590960
Дата охранного документа: 10.07.2016
Показаны записи 1-10 из 133.
27.05.2013
№216.012.455b

Устройство для измерения компонент вектора плотности тока в проводящих средах

Изобретение относится к электроизмерительной технике и может быть использовано для измерения составляющих плотности электрического тока в проводящих средах. Сущность: устройство состоит из установленных взаимно ортогонально трех датчиков 1. Датчики жестко закреплены в корпусе 2, выполненном в...
Тип: Изобретение
Номер охранного документа: 0002483332
Дата охранного документа: 27.05.2013
20.04.2015
№216.013.441a

Способ герметизации оптического волокна в корпусе

Изобретение относится к области приборостроения и касается способа герметизации оптического волокна в корпусе. Способ заключается в нанесении анаэробного клея на место герметизации оптического волокна с последующим введением волокна в сквозное отверстие корпуса детали. После отверждения клея...
Тип: Изобретение
Номер охранного документа: 0002548932
Дата охранного документа: 20.04.2015
10.04.2016
№216.015.2e50

Способ приготовления компактного гидрида титана

Изобретение относится к водородной технологии и может быть использовано в качестве элемента биологической защиты ядерных энергетических установок. Образец титана подвергают активации с последующим насыщением водородом. Насыщение проводят при 580-670°C, скорости подачи водорода к образцу не...
Тип: Изобретение
Номер охранного документа: 0002579580
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.39c1

Бронезащита

Изобретение относится к области вооружений и военной техники, в частности к броневым конструкциям, которые могут быть применены в индивидуальных и транспортных средствах для защиты от воздействия пуль стрелкового оружия и высокоэнергетических осколков поля боя, а также в атомной и других...
Тип: Изобретение
Номер охранного документа: 0002582463
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5485

Кольцевая щелевая антенна

Изобретение относится к антенной технике. Кольцевая щелевая антенна содержит коаксиально расположенные полые металлические внешний и внутренний цилиндры, проводящее кольцо, первый и второй коаксиальные соединители, первую и вторую точки питания, первый и второй проводящие штыри. Проводящее...
Тип: Изобретение
Номер охранного документа: 0002593422
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.560c

Контейнер для транспортирования и хранения отработавшего ядерного топлива

Изобретение относится к контейнерам и предназначено для транспортирования и длительного хранения отработавшего ядерного топлива (ОЯТ) в виде отработавших тепловыделяющих сборок (ОТВС). Контейнер для транспортирования ОЯТ содержит металлический корпус с нижним комингсом с закрепленными на нем...
Тип: Изобретение
Номер охранного документа: 0002593273
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5646

Чехол для размещения и хранения отработавших тепловыделяющих сборок реактора ввэр-1000

Изобретение относится к ядерной технике, а именно к дистанционирующим устройствам, в которых размещаются отработавшие тепловыделяющие сборки реактора ВВЭР-1000, во время их транспортирования и хранения в контейнерах. Чехол для размещения и хранения отработавших тепловыделяющих сборок содержит...
Тип: Изобретение
Номер охранного документа: 0002593388
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c94

Способ определения динамического коэффициента внешнего трения

Использование: механические испытания материалов, в частности определение динамического коэффициента внешнего трения. Для определения динамического коэффициента внешнего трения используются два образца, нижний из которых закрепляют на платформе, способной поворачиваться относительно...
Тип: Изобретение
Номер охранного документа: 0002589955
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d04

Способ контроля хода выполнения программы пользователя, исполняющейся на вычислительных узлах вычислительной системы

Изобретение относится к области вычислительной техники, в частности к организации контроля хода выполнения программы, выполняющейся на вычислительной системе, вычислительном кластере. Технический результат - эффективное использование программы пользователя, что обеспечивает своевременное...
Тип: Изобретение
Номер охранного документа: 0002591020
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e6c

Способ определения характеристик срабатывания детонирующего устройства

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента...
Тип: Изобретение
Номер охранного документа: 0002590960
Дата охранного документа: 10.07.2016
+ добавить свой РИД