×
11.10.2018
218.016.9050

Результат интеллектуальной деятельности: Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов

Вид РИД

Изобретение

№ охранного документа
0002669154
Дата охранного документа
08.10.2018
Аннотация: Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения двойственности размеров и диффузии мицеллы ионогенного ПАВ методом динамического светорассеяния в водном растворе. Технический результат - обеспечение возможности изучения влияния добавок, электромагнитных полей, давления, температуры на двойственные свойства мицеллы. 1 ил.

Изобретение относится к пограничной области между физикой, химией и биологией. Может быть использовано в научных и промышленных лабораториях для определения параметров флуктуационного фазового перехода в воде и влияния на них давления, температуры, полей, добавок веществ. По этим данным судят о применении амфифилов в различных отраслях промышленности и сельского хозяйства.

Известен способ измерения фазового перехода жидкость-жидкость в водных растворах амфифилов по изменению гидролиза s-алкилизотиуроний хлоридов (Патент РФ № 2433386, опубл. 10.11.2011). Способ позволяет измерять среднюю концентрацию фазового перехода или критическую концентрацию мицеллообразования (ККМ), степень кооперативности, область концентрации, где происходит переход, глубину перехода. Доказано(Huangetal.//PNAS. 2009.V.106.P.15214), что вода на масштабах, примерно, 1 нм образует при комнатной температуре мерцающие флуктуации (кластеры)низкой плотности со строгой тетраэдрической координацией (LDL) и флуктуации высокой плотности с разорванными Н-связями (HDL), которые находятся в равновесии.

Появление амфифилов в воде сдвигает равновесие в сторону образования кластеров LDL. По достижении ККМ в воде достигается средняя концентрация перехода жидкость-жидкость или полиаморфного перехода воды. Осцилляция ансамблей кластеров воды сопровождается осцилляцией ансамблей двух видов мицелл (MirgorodYu.A., T.A.Dolenko // Langmuir.2015.V.31.P.8535-8547). Двойственные свойства мицелл были доказаны методом солюбилизации углеводородных газов в мицеллярных растворах алкилсульфатов натрия (Миргород Ю.А.//Журн. структ. химии. 2008.Т.49.С.920).Автоколебания ансамблей кластеров мицелл происходят быстро 10-3-10-8 с. Поэтому данный способ определения двойственности мицелл не может проследить за существованием мицелл в пространстве и времени. Он дает только разный вклад метиленовых групп в энергию Гиббса солюбилизации двумя типами мицелл.

Известен способ (патент РФ № 2550989, опубл. 20.05.15) предлагает определять существование двойственности мицелл измерением теплового эффекта разбавления мицеллярного раствора амфифила растворами полиэтиленоксида. Этот способ визуализации двойственности свойств мицелл тоже не может проследить за их существованием в пространстве и времени.

Задачей изобретения является расширение функциональности способа за счет идентификации (визуализации) двух суперпозиций мицелл в пространстве (размер мицелл) и времени (скорость диффузии мицелл).

Технический результат согласно изобретению достигается измерением размеров двойственных мицелл ионогенных ПАВ и их диффузии методом динамического рассеяния без добавления постороннего электролита.

На рис.1 показано распределение интенсивности рассеянного света по гидродинамическим диаметрам мицелл ДДС в воде: a) 0.01 М ДДС; b).0.01 М ДДС+0.01 М NaCl при 298К.

Исследование водных растворов ионогенных ПАВ методом динамического светорассеяния (ДСР) выполняют, например, на анализаторе ZetasizerNanoZS (MalvernInstrumentsLtd, Великобритания). В качестве источника света в спектрометре используется линейно поляризованный (500:1) гелий-неоновый лазер с длиной волны 632.8 нм. Интенсивность падающего луча регулируется при помощи автоматического аттенюатора (10 уровней ослабления), что позволяет измерять образцы с различным уровнем рассеяния. В качестве детектирующей системы используется лавинный фотодиод. Для исключения многократного рассеяния при высоких концентрациях частиц/молекул и оптимизации сигнала от слабо рассеивающих образцов с низкой концентрацией используется технология неинвазивного обратного рассеяния – NIBS (запатентованная технология Malvern). При этом рассеянный свет регистрируется под углом 173 градуса. В рамках технологии NIBS возможно изменение/оптимизация рассеивающего объёма, что позволяет работать в широком диапазоне концентраций.

Термостатирование образца в кюветном отсеке анализатора осуществляется посредством интегрированного элемента Пельтье. Измерения проводились при температуре образца 25°С. Время термостатирования после установки кюветы с образцом в кюветный отсек составляло 5 минут. Объём образца – 2 мл. Перед измерением растворы додецилсульфата натрия (ДДС) фильтруют через MF-Millipor мембраны VSWP с размерами пор 0,025 мкм. Чистота ДДС проверяется по одинаковому ИК-спектру до и после перекристаллизации образца из этилового спирта.

Обработка автокорреляционной функции проводится методом кумулянтов (параметры Z-average и PDI) и при помощи алгоритма NNLS (GeneralPurpose – полидисперсная модель, регуляризатор 0.01) для получения распределения. Для расчетов использовались показатель преломления воды 1.330 и вязкость 0.8872 сП.

В процессе ДСР измеряемые флуктуации конвертируются в интенсивность корреляционной функции

,

где Т –время интегрирования или время накопления интенсивности корреляционной функции. Корреляционная функция описывает скорость изменения интенсивности рассеяния путем сравнения интенсивности в момент времени t с интенсивностью в более позднее время t+ обеспечивая количественное измерение мерцающего света. Практически интенсивность измеряется в дискретном времени, где - время задержки. Время задержки в приборе 0.5 мкс. Методом ДРС получают информацию о флуктуациях с временем жизни больше, чем 0.5 мкс.

Невозможно узнать, как мерцает каждая частица. Вместо этого коррелируют движение частиц относительно друг друга. Коррелируемоедвижениечастицописываеткоррелируемаяфункцияполя

Две функции объединяют в соотношение Siegert

Получают выражение для автокорреляционной функции

,

где B-базовая линия, которая стремится к нулю.инструментальный ответ или y-отрезок. Анализируют полученные данные с помощью подгонки под функции методом кумулянтов или Contin. Анализ включает, прежде всего, определение константы Г убывающей автокорреляционной функции, которая пропорциональна ширине спектра рассеяния и связана с коэффициентом диффузии неоднородностей D

,

где q равен

,

аn-коэффициент преломления воды. Коэффициент диффузии неоднородностей D, в свою очередь, связан с их гидродинамическим радиусом r соотношением

, (уравнение 1)

где k- константа Больцмана, T- абсолютная температура, - сдвиговая вязкость.

Ниже приводятся примеры измерения размеров суперпозиций мицелл ионогенного ПАВ ДДС и коэффициентов их диффузиибез и с добавками неорганического электролита.

Пример1. Перед приготовлением 0,01 М растворов ДДС готовят дистиллированную воду, фильтруют ее через мембранный фильтр 0,025 мкм. Проверяют ее чистотуна ZetasizerNanoZS по отсутствию коррелограммы от пыли и пузырьков воздуха. Вместо корреляционной функции у воды на базовой линии должен быть «шум». Прибор ДСР детектирует суммарную интенсивность поляризованного монохроматического светорассеяния от частиц в течение 1-2 мин. с интервалами 0,5 мкс, т. е. во всем диапазоне изменения времени релаксации процессов мицеллообразования ДДС 15 мкс- 1,8 мс. ДДС проверяют на чистоту сравнением ИК-спектров до и после перекристаллизации из этилового спирта и по отсутствию минимума около ККМ на изотерме поверхностного натяжения его растворов. На Рис.1а представлены распределения интенсивности рассеянного света по гидродинамическим диаметрам частиц, в логарифмической шкале для 0,01М раствора ДДС.Средние гидродинамические диаметры мицелл рассчитаны с помощью программного обеспечения прибора по полученным корреляционным функциям. Как видно из Рис. 1а, по размерам идентифицируются 3 частицы с радиусами 0,56, 92 и 301 нм и соответствующими им коэффициентами диффузии 4,39∙10-7, 2,6∙10-9 и 8,17∙10-10 м2/с. Первая частица по размерам равна тройнику ДДС. Вторая контактной мицелле, а третья гидратированной мицелле.

Пример 2. Готовят 0,01М раствор ДДС с добавкой постороннего электролита 0,01 MNaCl, как в примере 1. На Рис.1b по размерам идентифицируются 3 частицы с диаметрами 3,56; 209,3; 5019 нм.

Пример 3. Готовят 0,01 М раствор ДДС с добавкой 0,05 М NaCl, как в примере 1. На распределении интенсивности рассеянного света по гидродинамическим диаметрам частиц получают только частицы с диаметром 3,6 нм.

Из приведенных примеров видно, что добавление электролита разрушает структуру воды, которая участвует в полиаморфном переходе. Визуализируется только мицелла, определяемая малоугловым рентгеновским и малоугловым нейтронным рассеянием диаметром 3,4 нм (CabaneB. etal.J.Physique. 1985.V.46.P. 2161). Двойственность мицеллы обнаруживается методом ДСР только в отсутствии постороннего электролита (пример 1).

Метод ДСР и его программное обеспечение идентифицируют эти необычные частицы гидродинамическими сферами (уравнение 1). В действительности, флуктуации плотности воды, как установлено (R.S.Farinato, R.L. Rowell, J. ColloidandInterfaceScience 66 (1978) 483-489) носят анизотропный характер. Свойства этих структур воды различны по разным направлениям. Их анизотропная структура пока не известна. Она может быть в виде спирали, сэндвича, плоскости и т.д. Как показывает эксперимент, структура обладает оптической активностью (A.I.Rusanov, A.G. Nekrasov.Langmuir 26 (2010) 13767−13769).Поскольку обе структуры «видит» прибор, мы можем утверждать, что обе структуры существуют дольше времени задержки прибора ДСР 0,5 мкс.

Таким образом, методом ДРС можно определять суперпозиции мицелл ионогенных ПАВ. После дополнительных исследований флуктуационные суперпозиции мицелл могут оказаться квантовыми суперпозициями.

Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов, отличающийся тем, что двойственный размер мицеллы и коэффициенты диффузии мицелл ионогенных ПАВ определяют без добавки постороннего неорганического электролита.
Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов
Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 20.
26.08.2017
№217.015.eb9c

Устройство для поиска минимального значения интенсивности размещения в тороидальных системах при направленной передаче информации

Изобретение относится к устройствам поиска минимального значения интенсивности размещения. Технический результат заключается в расширении области применения устройства за счет введения средств для поиска минимального значения интенсивности размещения в тороидальных системах при направленной...
Тип: Изобретение
Номер охранного документа: 0002628329
Дата охранного документа: 15.08.2017
04.04.2018
№218.016.3620

Котел отопительный газовый

Изобретение относится к котлу отопительному газовому. Kотёл отопительный газовый для нужд отопления и горячего водоснабжения в жилых помещениях состоит из прямоугольного шкафа с тепловой защитой и кожухом, внутри которого расположены топка с горелкой, теплообменник и патрубок выхода продуктов...
Тип: Изобретение
Номер охранного документа: 0002646276
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.46e6

Способ регенерации скважин на воду

Изобретение относится к эксплуатации водозаборов подземных вод, вертикальных дренажей для защиты территорий от подтопления, систем для подтопления, систем для пополнения запасов подземных вод через закрытые инфильтрационные сооружения, в частности регенерации скважин на воду при механической и...
Тип: Изобретение
Номер охранного документа: 0002650515
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.5843

Способ получения нитрата олова (iv)

Изобретение относится к технологии получения солей олова и может быть использовано в различных областях химической промышленности, в научных исследованиях и аналитическом контроле. Способ получения нитрата олова (IV) заключается в прямом взаимодействии оксида олова (IV) с азотной кислотой в...
Тип: Изобретение
Номер охранного документа: 0002655142
Дата охранного документа: 23.05.2018
14.06.2018
№218.016.61a2

Автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий

Изобретение относится к области электротехники. Технический результат заключается в расширении функциональных возможностей автоматизированной системы диагностики и контроля состояния изоляции силовых кабельных линий и достигается благодаря тому, что в систему вводятся трансформаторы тока и...
Тип: Изобретение
Номер охранного документа: 0002657290
Дата охранного документа: 13.06.2018
12.07.2018
№218.016.6fe6

Способ получения бензоата и замещенных бензоатов олова (iv)

Изобретение относится к способу получения бензоата и замещенных бензоатов олова (IV) прямым взаимодействием диоксида олова с бензойной, салициловой, п-оксибензойной, анисовой, антраниловой, п-аминобензойной, п- и м-нитробензойными, фенилантраниловой, м-хлорбензойной, ацетилсалициловой,...
Тип: Изобретение
Номер охранного документа: 0002660905
Дата охранного документа: 11.07.2018
18.07.2018
№218.016.718d

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промышленной электронике и может быть использовано для контроля и определения параметров объектов измерения, а также физических величин посредством параметрических датчиков. Технический результат: уменьшение погрешности...
Тип: Изобретение
Номер охранного документа: 0002661457
Дата охранного документа: 16.07.2018
11.10.2018
№218.016.9000

Ингибитор коррозии нефтяных труб и способ его получения

Изобретение относится к защите нефтяных труб от кислотной коррозии и может применяться при добыче нефти или природного газа. Ингибитор коррозии получен экстракцией никотина и сопутствующих веществ из отходов табака водным раствором бензойной кислоты и состоит из соли никотина и бензойной...
Тип: Изобретение
Номер охранного документа: 0002669137
Дата охранного документа: 08.10.2018
19.10.2018
№218.016.9385

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсосберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде...
Тип: Изобретение
Номер охранного документа: 0002669897
Дата охранного документа: 16.10.2018
27.10.2018
№218.016.96df

Способ и устройство мобильного робота для прохождения замкнутых контуров и лабиринтов

Изобретение относится к робототехнике и может быть использовано для поиска пути в лабиринтах и пересеченной местности. Робот содержит платформу с двумя закрепленными на ней электродвигателями, на которых жестко установлены колеса, микроконтроллер и плату управления двигателями с помощью...
Тип: Изобретение
Номер охранного документа: 0002670826
Дата охранного документа: 25.10.2018
Показаны записи 1-10 из 10.
27.03.2015
№216.013.3622

Способ получения наночастиц висмута

Изобретение может быть использовано в области нанотехнологий и химической промышленности. Способ получения наночастиц висмута включает концентрирование методами экстракции прекурсоров полупроводников из водных растворов с последующим их восстановлением. В качестве экстрагентов используют...
Тип: Изобретение
Номер охранного документа: 0002545342
Дата охранного документа: 27.03.2015
20.05.2015
№216.013.4c13

Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов

Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения параметров фазового перехода в воде и влияния на них условий (давление, температура), добавок веществ и полей. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002550989
Дата охранного документа: 20.05.2015
20.03.2016
№216.014.ca94

Способ получения наночастиц никеля, покрытых слоем углерода

Изобретение может быть использовано в неорганической химии. Для получения наночастиц никеля, покрытых слоем углерода, сухие лепестки китайской розы, пропитанные водным раствором хлорида никеля, подвергают термическому разложению в вакууме 10 мбар. Разложение ведут при нагревании до температуры...
Тип: Изобретение
Номер охранного документа: 0002577840
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2e36

Фотоэлектрохимическая ячейка

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Фотоэлектрохимическая ячейка содержит фотоэлектроды, электролит и электролитный мостик. При этом фотоэлектроды представляют собой растение с листьями, стволом и корнями, насыщенными наночастицами металлов,...
Тип: Изобретение
Номер охранного документа: 0002579782
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.6d5d

Способ получения магнитной жидкости

Изобретение может быть использовано при получении магнитно-жидкостных уплотнений вращающихся валов, магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. При получении магнитной жидкости из оксидгидроксида железа (III) или гетита и олеиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002597376
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.85dd

Способ получения лактобионовой кислоты

Изобретение относится к способу получения лактобионовой кислоты и может быть использовано в химической промышленности. Предложен способ получения лактобионовой кислоты из лактобионата натрия ионным обменом на катонитах, отличающийся тем, что используют катиониты КУ-2.8-ЧС, Amberlite TM FPC23 H,...
Тип: Изобретение
Номер охранного документа: 0002603195
Дата охранного документа: 27.11.2016
26.08.2017
№217.015.ebd5

Сорбент для очистки водных сред от ионов мышьяка и способ его получения

Изобретение относится к области сорбционной очистки вод. Предложен сорбент для очистки водных сред от мышьяка. Сорбент содержит 98-99 вес.% наночастиц железа и крахмал. Для получения сорбента сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа с крахмалом, через...
Тип: Изобретение
Номер охранного документа: 0002628396
Дата охранного документа: 16.08.2017
11.10.2018
№218.016.9000

Ингибитор коррозии нефтяных труб и способ его получения

Изобретение относится к защите нефтяных труб от кислотной коррозии и может применяться при добыче нефти или природного газа. Ингибитор коррозии получен экстракцией никотина и сопутствующих веществ из отходов табака водным раствором бензойной кислоты и состоит из соли никотина и бензойной...
Тип: Изобретение
Номер охранного документа: 0002669137
Дата охранного документа: 08.10.2018
13.12.2018
№218.016.a5f6

Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов

Изобретение относится к пограничной области между физикой, химией и биологией. Может быть использовано в научных и промышленных лабораториях для определения хиральности кластеров воды. Предложен способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов, а...
Тип: Изобретение
Номер охранного документа: 0002674556
Дата охранного документа: 11.12.2018
04.05.2020
№220.018.1b61

Способ измерения параметров фазового перехода жидкость-жидкость

Изобретение относится к применению поверхностно-активных веществ (ПАВ) в различных технологиях промышленности, сельского хозяйства, здравоохранения и может применяться в заводских лабораториях, научно-исследовательских учреждениях. Заявлен способ измерения параметров фазового перехода...
Тип: Изобретение
Номер охранного документа: 0002720399
Дата охранного документа: 29.04.2020
+ добавить свой РИД