×
23.09.2018
218.016.8a1e

Результат интеллектуальной деятельности: Ступня ноги шагающего космического микроробота

Вид РИД

Изобретение

Аннотация: Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена в виде пластины с закрепленным на поверхности ее контакта с поверхностью перемещения средством фиксации. При этом ступня соединена с ногой пяткой с помощью шарнира с одной степенью свободы. Пластина выполнена из гибкого диэлектрического материала с размещенными на ней с промежутками между собой жесткими элементами так, что их суммарная площадь на единице площади поверхности пластины монотонно убывает от пятки к носку. А средство фиксации выполнено в виде отдельных, не контактирующих между собой и покрытых слоем диэлектрика проводников, подключенных к разным полюсам источника напряжения. Изобретение обеспечивает повышение надежности фиксации на поверхности перемещения. 6 з.п. ф-лы, 5 ил.

Изобретение относится к робототехнике, а именно к шагающим мобильным микророботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Важным условием для возможности использования такого класса устройств является наличие у них возможности фиксации на поверхности перемещения

Известен робот-альпинист, конструкция которого предусматривает использование адгезивных элементов для закрепления на поверхности перемещения (US 2012181096 [1]). В качестве адгезивных элементов в преимущественном варианте реализации предлагается использовать вакуумные присоски, закрепленные на снабженной соответствующим приводом движущейся ленте, охватывающей опору.

Недостатком известной конструкции является ее сложность и значительные массогабаритные характеристики, что ограничивает их применение для выполнения задач напланетных миссий.

Известна конструкция ноги для многоногого шагающего робота, содержащая гибкую ступню с выполненными в ней отверстиями для подачи жидкого адгезива на нижнюю, контактную поверхность (CN 201784730 [2]). Над ступней размещается резервуар с жидким адгезивом со средством создания в нем избыточного давления, обеспечивающим подачу адгезива на контактную поверхность ступни.

Недостатком известной конструкции является ее сложность и значительные массогабаритные характеристики, что ограничивает их применение для выполнения задач напланетных миссий.

Наиболее близким к заявляемому изобретению по своей технической сущности и достигаемому эффекту является шагающий робот, предназначенный для выполнения работ в открытом космосе, в частности для инспекции поверхности аппаратов (US 2007173973 [3]). Ступня робота выполнена в виде пластины, закрепленной на стержне (голеностопе) по ее центру, а средством фиксации ноги на поверхности перемещения служит слой адгезива, нанесенный на поверхность контакта ступни с поверхностью перемещения.

Недостатком известной конструкции ступни является ее невозможность адаптации к неровностям поверхности перемещения при высоте неровностей, превышающей толщину адгезива, что приводит к уменьшению поверхности контакта и снижает надежность фиксации робота к поверхности перемещения. Кроме того, ступня робота выполнена в виде пластины, что также снижает надежность фиксации робота к поверхности перемещения. Известно также, что усилие отрыва зачастую превосходит усилие прижатия, при этом известная конструкция не позволяет уменьшить усилие отрыва из-за изотропной жесткости пластины.

Заявляемая конструкция ступни ноги шагающего космического микроробота направлена на повышение надежности фиксации на поверхности перемещения.

Указанный результат достигается тем, что ступня ноги шагающего космического микроробота выполнена в виде пластины с закрепленным на поверхности ее контакта с поверхностью перемещения средством фиксации. При этом ступня соединена пяткой с ногой с помощью шарнира с одной степенью свободы, пластина выполнена из гибкого диэлектрического материала с размещенными на ней с промежутками между собой жесткими элементами так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку, а средство фиксации выполнено в виде отдельных, не контактирующих между собой и покрытых слоем диэлектрика проводников, подключенных к разным полюсам источника напряжения.

Указанный результат достигается также тем, что жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку.

Указанный результат достигается также тем, что жесткие элементы выполнены с разной площадью, убывающей от пятки к носку

Указанный результат достигается также тем, что суммарная площадь жестких элементов на единице поверхности пластины монотонно убывает от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку.

Указанный результат достигается также тем, что жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку.

Указанный результат достигается также тем, что жесткие элементы выполнены с разной площадью, убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку.

Отличительными признаками заявляемого устройства являются:

- ступня соединена пяткой с ногой с помощью шарнира с одной степенью свободы;

- пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами;

- суммарная площадь жестких элементов на единице поверхности пластины монотонно убывает от пятки к носку;

- средство фиксации выполнено в виде отдельных, не контактирующих между собой и покрытых слоем диэлектрика проводников, подключенных к разным полюсам источника напряжения;

- жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку.

- жесткие элементы выполнены с разной площадью, убывающей от пятки к носку;

- суммарная площадь жестких элементов на единице поверхности пластины монотонно убывает от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку;

- жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку;

- жесткие элементы выполнены с разной площадью, убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку;

- подключенные к разным полюсам источника напряжения проводники образуют две ориентированные зубьями навстречу друг другу и вдвинутые друг в друга гребенки.

Выполнение пластины гибкой обеспечивает адаптацию ступни по неровной поверхности перемещения и этим обеспечивает увеличение площади контакта между ступней и поверхностью перемещения.

Размещение на пластине с промежутками между собой жестких элементов не влияет на адаптацию ступни к поверхности перемещения, но предотвращает ее скручивание, т.к. жесткие элементы выполняют роль грузиков и обеспечивают прижим ступни к поверхности перемещения.

Выполнение средства фиксации ступни к поверхности перемещения в виде отдельных, не контактирующих между собой и покрытых слоем диэлектрика проводников, подключенных к разным полюсам источника напряжения обеспечивает «прилипание» к поверхности перемещения. Электростатический прижим основан на эффекте поляризации диэлектриков при помещении их в электрическое поле. Молекулы диэлектрика превращаются в электрические диполи. Смещение зарядов внутри молекул проявляется как возникновение на одном из концов диэлектрика тонкого слоя с не скомпенсированным положительным зарядом, а на другом конце тонкого слоя с не скомпенсированным отрицательным зарядом. Преимуществом такой фиксации является возможность внешнего управления процессом «фиксация-отрыв» за счет возникновения сил сцепления, что применяют, например, для фиксации пластин в технологическом оборудовании при их обработке. При отключении напряжения электрическое поле исчезает и происходит релаксация заряда в диэлектрике. Время релаксации в диэлектрике зависит от материала и условий, в которых происходит процесс «поляризация-деполяризация», но во всех случаях достаточно для отрыва ступни от поверхности и последующего ее перемещения с ногой во время шага.

Покрытие проводников слоем диэлектрика необходимо для того, чтобы обеспечить его поляризацию с последующей фиксацией стопы к поверхности. При этом материал диэлектрика и толщина слоя выбираются из условий: диэлектрик должен быть гибким, образовывать пленку, электрически прочным, а его толщина должна быть достаточной для электрической изоляции стопы от поверхности, с одной стороны, и не избыточной для выбора управляющего напряжения (очевидно, что чем толще диэлектрик, тем выше управляющее напряжение), с другой.

Теоретическое значение усилия закрепления F идеального электростатического прижима при подаче на него напряжения V определяется оценочным выражением: F=(1/2)ε0εS(V/d)2,

где ε, d - диэлектрическая проницаемость и толщина диэлектрического слоя

Соединение ступни пяткой с ногой с помощью шарнира с одной степенью свободы и размещение жестких элементов на пластине так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку необходимо для того, чтобы преодолеть силу сцепления ступни с поверхностью перемещения, обусловленную наличием средства фиксации и обеспечить отрыв ступни от поверхности перемещения. Таким образом механика процесса «фиксация - отрыв» заключается в последовательном прикреплении пятки ступни с помощью средства фиксации, образовании узкой трещины, образуемой между поверхностью и пяткой ступни, увеличении поверхности контакта, с уменьшением величины трещины и в результате прикрепления ступни к поверхности с незначительным усилием по сравнению с со ступней, выполненной из жесткой пластинки. Отлипание ступни от поверхности начинается от пятки ступни к носку с последовательным увеличением трещины за счет ослабления сил сцепления при условии переменной жесткости, монотонно убывающей от пятки к носку. При отключении управляющего фиксацией напряжения, внешнее электрическое поле исчезает и происходит релаксация диэлектрика. После релаксации диэлектрика наступает момент отрыва ступни от поверхности. Затем цикл повторяется.

Для того, чтобы обеспечить выполнение условия монотонного убывания от пятки к носку суммарной площади жестких элементов на единице поверхности пластины можно использовать в частных случаях различные варианты реализации устройства. Можно жесткие элементы выполнять одинаковой площади, а промежутки между ними увеличивать от пятки к носку. А можно выполнять жесткие элементы с разной площадью, убывающей от пятки к носку. Кроме того, в частных случаях реализации целесообразно изменять жесткость ступни не только от пятки к носку, но и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. Это обеспечит полный контакт ступни с поверхностью при условии неоднородностей поверхности по двум осям. При этом также возможны варианты реализации для выполнения этого условия. Можно жесткие элементы выполнять одинаковой площади и изменять промежутки между ними по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку, а можно выполнять жесткие элементы с разной площадью, уменьшающейся по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку.

В частных случаях реализации целесообразно подключенные к разным полюсам источника напряжения проводники выполнять так, что они образуют две ориентированные зубьями навстречу друг другу и вдвинутые друг в друга гребенки. Это позволяет наиболее эффективно (по всей площади ступни) организовать распределение электрического поля, возникающего при подаче управляющего напряжения.

Сущность заявляемого устройства поясняется примерами реализации и чертежами. На фиг. 1 показан схематично вид сбоку на ступню, реализованную в наиболее общем виде. На фиг. 2 показан схематично вид сверху на ступню. На фиг. 3 представлены варианты реализации ступни (вид сверху) когда жесткие элементы выполнены с разной площадью, убывающей по направлению к периферии от оси симметрии, проходящей через пятки к носку. На фиг. 4 представлен вариант реализации ступни с электродами выполненными так, что они образуют две ориентированные зубьями навстречу друг другу и вдвинутые друг в друга гребенки и показано распределение зарядов и силовых линий электростатического поля. На фиг. 5 схематично показана адаптация ступни к поверхности перемещения.

Ступня ноги шагающего космического микроробота в самом общем случае представляет собой гибкую пластину 1 на которой размещены с промежутками между собой жесткие элементы 2 так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку. Ступня соединена пяткой с ногой 3 с помощью шарнира 4 с одной степенью свободы, На поверхность контакта пластины 1 с поверхностью перемещения нанесены подключенные к источнику напряжения проводники (электроды) 5, покрытые слоем диэлектрика 6. В качестве материала пластины 1 может использоваться полиимид, полиэфирамид, полисульфон или подобный полимер, формируемый из раствора с последующей полимеризацией. В качестве материала жестких элементов 2 может выступать монокристаллический кремний, поликристаллический кремний, поликор, металлы или пьезоэлектрические жесткие материалы - кварц, ниобат лития и пр. В качестве материала в качестве слоя диэлектрика 6 может использоваться полиимид, полиэфиримид, полисульфон или другой полимер, формируемый по растворной технологии.

Устройство функционирует следующим образом. При прилипании ступни к поверхности последовательно прикрепляется пятка ступни возле шарнира 4 с помощью сил притяжения возникающих при подаче напряжения на электроды 5 с постепенным увеличением площади контакта между ступней и поверхностью с уменьшением трещины между ступней и поверхностью и за счет переменной жесткости ступни (фиг. 3), обеспечиваемой суммарной площадью жестких элементов 2 (фиг. 3) на единице поверхности пластины монотонно убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. При этом жесткие элементы 2 (фиг. 3) выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку, жесткие элементы могут быть выполнены с разной площадью (2, фиг. 3), убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку. В момент отлипания ступни от поверхности отключается подача напряжения на электроды 5 и процесс отсоединения от поверхности контакта начинается от пятки ступни к носку с последовательным увеличением трещины за счет отсутствия сил сцепления при условии переменной жесткости ступни, монотонно убывающей от пятки к носку за счет уменьшения площади жестких элементов 2.


Ступня ноги шагающего космического микроробота
Ступня ноги шагающего космического микроробота
Ступня ноги шагающего космического микроробота
Ступня ноги шагающего космического микроробота
Ступня ноги шагающего космического микроробота
Источник поступления информации: Роспатент

Показаны записи 31-31 из 31.
14.05.2023
№223.018.56a2

Устройство и способ избавления от неустойчивостей оптического разряда

Изобретение относится к устройствам и способам избавления от неустойчивостей оптического разряда для стабилизации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях....
Тип: Изобретение
Номер охранного документа: 0002734112
Дата охранного документа: 13.10.2020
Показаны записи 31-40 из 52.
02.03.2019
№219.016.d1fd

Герметичный сборочный модуль для монтажа микрорадиоэлектронной аппаратуры, выполненный групповым методом с последующей резкой на модули

Использование: для поверхностного монтажа. Сущность изобретения заключается в том, что герметичный сборочный модуль для монтажа микрорадиоэлектронной аппаратуры, выполненный групповым методом с последующей резкой на модули, содержит герметично соединенные при помощи стеклокерамического припоя...
Тип: Изобретение
Номер охранного документа: 0002680868
Дата охранного документа: 28.02.2019
29.03.2019
№219.016.f746

Тепловой микромеханический актюатор и способ его изготовления

Изобретение относится к области микросистемной техники и может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы, обеспечивающие преобразование «электрический сигнал - перемещение» и/или «изменение...
Тип: Изобретение
Номер охранного документа: 0002448896
Дата охранного документа: 27.04.2012
29.04.2019
№219.017.447e

Микросистемное устройство управления поверхностью для крепления малогабаритной антенны

Изобретение относится к области микросистемной техники и может быть использовано при создании микросистемных устройств управления и/или сканирования малогабаритной антенной или оптической отражающей поверхностью (зеркала) на основе подвижных термомеханических микроактюаторов, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002456720
Дата охранного документа: 20.07.2012
01.05.2019
№219.017.47ea

Свч фильтр на основе интегрированного в подложку волновода и способ его изготовления

Использование: для создания СВЧ фильтров. Сущность изобретения заключается в том, что СВЧ фильтр на основе интегрированного в подложку волновода, образованный цепочкой связанных резонаторов, конструкция которого состоит из следующих составных частей: металлического основания, подложки на основе...
Тип: Изобретение
Номер охранного документа: 0002686486
Дата охранного документа: 29.04.2019
18.05.2019
№219.017.59fa

Блокирующий диод для солнечных батарей космических аппаратов

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов. Техническим результатом заявленного изобретения является создание бескорпусного блокирующего диода для солнечных батарей космических аппаратов с...
Тип: Изобретение
Номер охранного документа: 0002457578
Дата охранного документа: 27.07.2012
15.06.2019
№219.017.8370

Способ формирования многофункциональных терморегулирующих покрытий на изделиях из алюминиевых сплавов

Изобретение относится к области гальванотехники и может быть использовано для формирования на изделиях прочно сцепленных с основой многофункциональных терморегулирующих оптических покрытий, обладающих повышенными теплозащитными функциями и применяемых для блоков бортовой аппаратуры и узлов...
Тип: Изобретение
Номер охранного документа: 0002691477
Дата охранного документа: 14.06.2019
22.06.2019
№219.017.8ec4

Способ изготовления сквозных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники, например микроинжекторов, микродвигателей, а именно при получении сквозных микроотверстий в кремниевой подложке. Способ изготовления сквозных...
Тип: Изобретение
Номер охранного документа: 0002692112
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.92c4

Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники

Заявленное изобретение относится к области микроэлектроники, а именно к способам получения диэлектрического слоя межслойной изоляции определенной толщины в изделиях микроэлектроники на основе полимерного покрытия. Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях...
Тип: Изобретение
Номер охранного документа: 0002692373
Дата охранного документа: 24.06.2019
23.07.2019
№219.017.b6fa

Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля

Использование: для детектирования напряженности электрического поля на поверхности конструкции космического аппарата. Сущность изобретения заключается в том, что миниатюрный измеритель параметров электризации космических аппаратов включает: микросистемный вибрационный модулятор, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002695111
Дата охранного документа: 19.07.2019
03.08.2019
№219.017.bbde

Коммутационная плата на нитриде алюминия для силовых и мощных свч полупроводниковых устройств, монтируемая на основании корпуса прибора

Использование: для высокомощных силовых и СВЧ полупроводниковых устройств. Сущность изобретения заключается в том, что коммутационная плата содержит пластину из нитрида алюминия со сквозными отверстиями, сформированными лазерной микрообработкой, металлизированные отверстия и металлический...
Тип: Изобретение
Номер охранного документа: 0002696369
Дата охранного документа: 01.08.2019
+ добавить свой РИД