×
14.09.2018
218.016.8804

Результат интеллектуальной деятельности: Способ получения сферических гранул на основе полидициклопентадиена

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления полимерных гранул на основе высокомолекулярных материалов, в частности на основе полидициклопентадиена (ПДЦПД). Готовят реакционную смесь на основе ди- или олиго-циклопентадиена в присутствии катализатора метатезисной полимеризации, предварительно растворенного в дихлорметане. Полученную реакционную смесь со скоростью 1,03-1,67 м/с при возбуждении вибрации на частоте 150-300 Гц впрыскивают в водную дисперсионную среду. Дисперсионная среда содержит хлорид натрия, поливиниловый спирт и воду с образованием капель мономера. Проводят полимеризацию капель мономера при свободном всплытии и их объемном содержании 10-20%. Выдерживают при температуре 94-96°С в течение 10-30 мин с образованием гранул и выделяют целевой продукт с размером 0,85-1,18 мм. При впрыскивании используют фильеру из металла, стекла или пластика толщиной 0,5-1 мм с диаметром отверстий 0,33-0,42 мм. Технический результат - повышение качества и выхода полимерных гранул на основе ПДЦПД с диаметром 0,85-1,18 мм за счет снижения содержания гранул с диаметром менее 0,85 мм и более 1,4 мм. 1 з.п. ф-лы, 8 пр.

Изобретение относится к области химии высокомолекулярных соединений, конкретнее к способу получения сферических гранул полидициклопентадиена (ПДЦПД) с проведением суспензионной полимеризации по механизму метатезиса. С учетом реализации механизма метатезисной и радикальной полимеризации, гранулы могут быть использованы в качестве расклинивающего агента (проппанта), применяемого при добыче нефти и газа методом гидравлического разрыва пласта.

Известен способ суспензионной полимеризации дициклопентадиена (ДЦПД) по механизму метатезиса с получением микросфер из полидициклопентадиена (ПДЦПД), включающий смешивание ДЦПД с катализатором и диспергирование смеси в этиленгликоле, содержащем поверхностно-активные вещества (ПАВ) при продувании дисперсии инертным газом. Е. Khosravi, Т. Szymanska-Buzar (Eds.) Ring Opening Metathesis Polymerisation and Related Chemistry: State of the Art and Visions for the New Century, Proceedings of the NATO Advanced Study Institute, held in Polaica-Zdroj, Poland, 3-15 September 2000, p. 44, 2002.

Недостатком способа является низкое качество получаемых микросфер, не менее 82 масс % которых имеет размер меньше 1 мкм, а также необходимость продувания реакционной среды инертным газом для предотвращения окисления продуктов полимеризации. Эти недостатки обусловлены видом применяемых катализаторов и используемой средой, в которой частично растворяется ДЦПД.

Известен способ суспензионной полимеризации ДЦПД по механизму метатезиса с получением пористых микросфер из ПДЦПД. A.D. Martina, R. Graf, J.G. Hilborn Macroporous poly(dicyclopentadiene) beads. Journal of Applied Polymer Science, v. 96, p. 407-415, 2005.

Недостатком способа является низкое качество получаемых микросфер, имеющих размер в диапазоне 200-600 мкм. Эти недостатки обусловлены применением как используемых катализаторов, так и введением в мономерную смесь порогена, препятствующего формированию монолитной структуры гранул.

Известный способ получения микросфер полимерного проппанта, включает получение жидкой полимерной смеси путем последовательного смешивания дициклопентадиена чистотой не менее 98% с полимерным стабилизатором, полимерным модификатором, радикальным инициатором и катализатором. Полученную полимерную смесь выдерживают при температуре 10-50°С в течение 1-40 мин. Далее вводят в виде ламинарного потока в предварительно нагретую не ниже температуры смеси воду, содержащую катионные или анионные поверхностно-активные вещества. Сферы образуются при постоянном перемешивании жидкой среды. Образовавшиеся микросферы отделяют от раствора, нагревают до температуры 150-340°С и выдерживают при данной температуре в течение 1-360 мин. RU 2528834 С1, опубл. 20.09.2014.

Недостатком этого способа является процесс формирования гранул перемешиванием жидкой среды и применение в качестве стабилизатора катионных или анионных ПАВ. Первое приводит к получению гранул размером 0,9 мм, обладающих большой дисперсией, типично в диапазоне ±60% от среднего диаметра капель, второе, приводит к увеличению содержания фракций гранул ПДЦПД с размером частиц менее 0,1 мм.

Наиболее близким по технической сущности и достигаемому результату является способ получения полимерных монодисперсных частиц суспензионной полимеризацией, основанный на принципе распада струи на капли, предпочтительно равного размера, при эжектировании гидрофобной жидкости со скоростью 1,2-2,2 м/с в водную дисперсионную среду через отверстия фильеры струями вверх при действии регулярной вибрации частотой 500-1130 Гц на форсунку впрыска или непосредственно на впрыскиваемую жидкость. В качестве стабилизатора используют раствор метилгидроцеллюлозы в количестве 0,05-0,2% от объема водной среды. При этом гидрофобную жидкость мономера вводят при температуре от 5 до 25°С, а водную дисперсионную среду вводят с температурой 60-90°С. Форполимеризация получаемых капель происходит при перемещении суспензии (концентрация по объему 40-60%) нисходящим потоком по каскаду вытянутых реакторов общей длинной 12 м в течении 40-100 минут, при этом конверсия мономера на выходе не превышает 20%. Постполимеризация происходит в два этапа - сначала частично полимеризованная суспензия подается в реактор и прогревается до температуры 76-82°С при мягком перемешивании, достигается конверсия порядка 90%. Далее суспензия перетекает в следующий реактор с мягким перемешиванием и прогревается до температуры более 90°С, при этом происходит окончательная полимеризация (конверсия составляет более 99%). Получают сферические частицы размером от 0,48 до 0,5 мм с очень малой дисперсией. RU 2315061 С1, опубл.21.01.2008.

Недостатком способа является неприменимость указанных параметров, при которых осуществляется стабильный процесс формирования капель, стабилизации суспензии, полимеризации получаемых капель, для мономерных смесей на основе ДЦПД.

Техническая задача изобретения заключается в разработке способа получения полимерных сферических гранул ПДЦПД путем метатезисной полимеризации ДЦПД с высоким выходом полимерных гранул, обладающих высокой степенью однородности по размеру.

Технический результат от реализации изобретения заключается в повышении качества и выхода полимерных гранул на основе ПДЦПД с диаметром 0,85-1,18 мм за счет снижения содержания гранул с диаметром менее 0,85 мм и более 1,4 мм. Повышение качества получаемых полимерных гранул, выражается в сферичности не менее 0,9 (по диаграмме Крумбьена-Шлосса) для не менее 95 масс % гранул.

Технический результат достигается тем, что готовят реакционную смесь на основе ди - или олиго-циклопентадиена в присутствии катализатора метатезисной полимеризации, предварительно растворенного в дихлорметане, полученную реакционную смесь со скоростью 1,03-1,67 м/с при возбуждении вибрации на частоте в диапазоне 150-300 Гц впрыскивают в водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1-2,0 в качестве модификатора плотности, поливиниловый спирт - 0,5-2,0 в качестве стабилизатора дисперсии, вода - 96-98,5, с образованием капель мономера, проводят полимеризацию полученных капель мономера при свободном всплытии и их объемном содержании 10-20%, выдержку при температуре 94-96°С в течение 10-30 мин с образованием гранул и выделение целевого продукта с диаметром 0,85-1,18 мм. При этом при впрыскивании используют фильеру из металла, стекла или пластика толщиной 0,5-1 мм с диаметром отверстий 0,33-0,42 мм.

Получают сферические полимерные гранулы следующим образом.

Готовят реакционную смесь на основе ди - или олиго-циклопентадиена, используя катализатор метатезисной полимеризации, выбранный из группы, состоящей из: [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N,N-диэтиламино-метилфенилметилен)рутений; 1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-метил-N-этиламино-метилфенилметилен)рутений; 1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-(4-морфонилинил)-аминометилфенилметилен)рутений, описанные в RU 2552750 С1.

Реакционную смесь со скоростью 1,03-1,67 м/с при возбуждении вибрации на частоте в диапазоне 150-300 Гц впрыскивают в подогретую до температуры 60-80°С водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1-2,0, поливиниловый спирт - 0,5-2,0, вода - 96-98,5, которой предварительно заполняется вся вытянутая колонна. Объемная скорость подачи водной дисперсионной среды в 5-10 раз больше объемной скорости подачи смеси, тем самым в образующейся суспензии обеспечивается концентрация мономера не более 10-20% по объему. При впрыскивании в форсунке реакционная смесь проходит через фильеру с отверстиями, образуя струи реакционной смеси в водной дисперсионной среде. Струи распадаются на капли мономера, преимущественно равного размера, под воздействием вибраций заданной определенной частоты. Образовавшиеся капли мономера начинают свободно всплывать по колонне, поскольку линейная скорость движения водной дисперсионной среды на порядок ниже скорости всплытия мономерных капель. Разность плотностей растворов составляет 20-50 кг/м3, что приводит к всплытию капель мономера со скоростью 0,5-3 см/с.Время пребывания капель мономера в колонне ограничивается скоростью их всплытия и высотой колонны 60-150 см, обеспечивая всплытие в течение 0,5-5 мин. Высота колонны может быть дополнительно увеличена, если капли мономера не достигают нужной степени конверсии, гарантирующей их стабильность при перемешивании в реакторе полимеризации.

Существенным является сочетание температуры водной дисперсионной среды, времени всплытия капель мономера в колонне и динамика набора вязкости реакционной смеси, которые подобраны таким образом, чтобы при всплытии капли мономера достигали конверсии 45-60% при подходе к верхней части колонны. Таким образом, конверсия мономера в каплях возрастает по высоте колонны. Сферичность получаемых гранул 0,9 (по диаграмме Крумбьена-Шлосса) обеспечивается за счет свободного пребывания капли мономера в водной дисперсионной среде без активных воздействий извне.

Для реализации непрерывного производства полимерных гранул, используется реактор вытянутой формы, так что верхняя часть рабочего объема закрывается рамочной мешалкой. В этой верхней части рабочей зоны реактора непрерывно идет стадия полимеризации образовавшихся капель мономера при их мягком перемешивании. При достижении конверсии в капле мономера 95-99 масс % плотность становится выше плотности водной дисперсионной среды и они плавно опускаются на дно реактора. Промежуточная зона служит для возврата водной дисперсионной среды в систему подготовки. Скапливаемые в нижней части реактора гранулы периодически сбрасываются через дно реактора на фильтр для дальнейшей отмывки и сушки.

Изобретение раскрывается в следующих примерах осуществления способа.

Пример 1.

Приготовленную реакционную смесь, содержащую, масс %: мономер-ДЦПД - 99,28, рутениевый катализатор [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N,N-диэтиламино-метилфенилметилен)рутений - 0,02, предварительно растворенный в дихлорметане - 0,70, с температурой 20°С подают в количестве 8,6 мл/мин на форсунку. Водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1,0, поливиниловый спирт - 0,5, вода - 98,5, подают со скоростью 60 мл/мин при температуре 80°С в колонну в виде ламинарного потока над местом впрыска реакционной смеси. Возмущаемые вибрацией от электродинамического вибратора при частоте 220 Гц струю реакционной смеси впрыскивают через отверстие форсунки вверх в водную дисперсионную среду, где распадаются на капли мономера, преимущественно равного размера, образуя суспензию. Форсунка впрыска включает в себя фильеру в виде диска из политетрафторэтилена толщиной 0,5 мм с одним отверстием круглого сечения диаметром 0,35 мм, при этом линейная скорость впрыска реакционной смеси в водную дисперсионную среду, составляет 1,33 м/с. Получаемая суспензия самотеком перетекает в реактор полимеризации, обогреваемый теплоносителем, поддерживая температуру в реакторе на уровне 95°С. По окончании впрыска реакционной смеси дожидаются момента попадания всех капель мономера в реактор полимеризации, выжидают в течение 10 мин до образования гранул и отбрасывают полученную суспензию на бумажный фильтр, где происходит отмывка образовавшихся гранул от раствора стабилизатора. После этого гранулы сушат при нормальных условиях. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 2.

Условия получения монодисперсных капель такие же, что и в примере 1, за исключением того, что в качестве катализатора используют 1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-метил-N-этиламино-метилфенилметилен)рутений. Частоту вибраций устанавливают 270 Гц при подаче реакционной смеси в водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1,5, поливиниловый спирт -2,0, вода - 96,5, в количестве 9,46 мл/мин. При этом линейная скорость впрыска реакционной смеси составляет 1,64 м/с. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 3.

Условия получения монодисперсных капель такие же, что и в примере 1, за исключением того, что в качестве катализатора используют 1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-метил-N-этиламино-метилфенилметилен)рутений. Частота вибраций составляет 300 Гц при подаче реакционной смеси в водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1,0, поливиниловый спирт -2,0, вода - 97,0 в количестве 9,6 мл/мин. При этом линейная скорость впрыска мономера в водный раствор стабилизатора составляет 1,66 м/с. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 4.

Условия получения монодисперсных капель такие же, что и в примере 2, за исключением того, что частота вибраций составляет 194 Гц. Фильера выполнена из латуни, но толщина фильеры и отверстие того же размера - 0,5 и 0,35 мм, соответственно. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 5.

Условия получения монодисперсных капель такие же, что и в примере 4, за исключением того, что частота вибраций составляет 196 Гц при подаче реакционной смеси в количестве 8,6 мл/мин. Толщина стеклянной фильеры 1 мм, а отверстие диаметром 0,42 мм. При этом линейная скорость впрыска реакционной смеси в водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1,8, поливиниловый спирт - 1,0, вода - 97,2, составляет 1,03 м/с при температуре 60°С. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 6.

Готовят реакционную смесь, содержащую, масс %: мономер-ДЦПД - 89,925, олиго-ЦПД - 10,0, рутениевый катализатор [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N,N-диэтиламино-метилфенилметилен)рутений - 0,005, предварительно растворенный в дихлорметане - 0,7, подают в количестве 8,6 мл/мин с температурой 25°С на форсунку. Водную дисперсионную среду, содержащую, масс %: хлорид натрия - 2,0, поливиниловый спирт - 2,0, вода - 96,0, подают со скоростью 200 мл/мин при температуре 60°С в виде ламинарного потока над местом впрыска реакционной смеси. Возмущаемые вибрацией от электродинамического вибратора при частоте 200 Гц струи реакционной смеси впрыскивают вверх через отверстие форсунки в водную дисперсионную среду, где распадаются на капли мономера, преимущественно равного размера, образуя суспензию. Форсунка впрыска включает в себя фильеру в виде латунного диска толщиной 0,5 мм с одним отверстием круглого сечения диаметром 0,35 мм, при этом линейная скорость впрыска составляет 1,48 м/с. Получаемая суспензия самотеком перетекает в реактор полимеризации, обогреваемый теплоносителем, поддерживая температуру в реакторе на уровне 95°С. По окончании впрыска реакционной смеси дожидаются момента попадания всех капель мономера в реактор полимеризации, выдерживают их в течение 30 мин до образования гранул и отбрасывают полученную суспензию на бумажный фильтр, где происходит отмывка образовавшихся гранул от раствора стабилизатора. После этого гранулы сушат при нормальных условиях. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 7.

Условия получения монодисперсных капель такие же, что и в примере 6, но в латунной фильере сделано три отверстия диаметром 0,37 мм. При этом линейная скорость впрыска реакционной смеси в водную дисперсионную среду, содержащую, масс %: хлорид натрия - 1,9, поливиниловый спирт - 0,9, вода - 97,2, составляет 1,33 м/с при температуре 70°С. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Пример 8.

Условия получения монодисперсных капель такие же, что и в примере 7, но в латунной фильере сделано семь отверстий диаметром 0,33 мм. При этом линейная скорость впрыска реакционной смеси в водную дисперсионную среду, содержащую, масс %: хлорид натрия - 0,5, поливинилоый спирт - 2,0, вода - 97,5, составляет 1,67 м/с при температуре 70°С. Визуальная оценка полученных гранул позволяет говорить об их сферичности не менее 0,9 по диаграмме Крумбьена-Шлосса. Анализ размеров гранул при рассеве на ситах дает следующее распределение:

Как показано в примерах, данная технология позволяет получать полимерные сферические гранулы на основе полидициклопентадиена, с высоким выходом, преимущественно размера 0,85-1,18 мм. Получаемые гранулы не имеют запаха, термо-механические показатели соответствуют уровню промышленно получаемых материалов на основе полидициклопентадиена.

Источник поступления информации: Роспатент

Показаны записи 61-63 из 63.
20.05.2023
№223.018.6786

Связующее на основе дициклопентадиена для изготовления полимерных композиционных изделий методом намотки и способ его получения

Группа изобретений может быть использована при изготовлении полимерных композиционных изделий, таких как обсадные трубы, цистерны и баллоны. Способ получения связующего на основе дициклопентадиена (ДЦПД) для производства композиционных изделий методом намотки включает приготовление компонентов...
Тип: Изобретение
Номер охранного документа: 0002794495
Дата охранного документа: 19.04.2023
16.06.2023
№223.018.7aa1

Система транспортировки нефтяной смеси для ликвидации подводных разливов нефти устройством типа "купол"

Изобретение относится к нефтегазовой отрасли, в частности к способу транспортировки на поверхность обводненной нефтяной смеси при ликвидации подводных разливов нефти. Техническим результатом изобретения является транспортировка обводненной нефтяной смеси, образующейся в результате аварийного...
Тип: Изобретение
Номер охранного документа: 0002739664
Дата охранного документа: 28.12.2020
17.06.2023
№223.018.7e95

Способ получения изопропилбензола алкилированием бензола пропиленом

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом. Способ предусматривает проведение алкилирования в многополочном контактном алкилаторе с адиабатическими слоями катализатора алкилирования, расположенными на каждой полке алкилатора, с введением...
Тип: Изобретение
Номер охранного документа: 0002770585
Дата охранного документа: 18.04.2022
Показаны записи 51-57 из 57.
19.06.2019
№219.017.886b

Способ получения эфиров α,β-ненасыщенных жирных кислот

Изобретение относится к усовершенствованному способу получения эфиров α,β-ненасыщенных жирных кислот, заключающемуся в том, что эфиры малеиновой кислоты подвергают взаимодействию с содержащими более четырех атомов углерода терминальными алкенами в присутствии катализатора метатезиса при...
Тип: Изобретение
Номер охранного документа: 0002320640
Дата охранного документа: 27.03.2008
19.06.2019
№219.017.8991

Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда

Изобретение относится способу получения лиганда катализатора тримеризации этилена. Описан способ получения лиганда катализатора тримеризации этилена в 1-гексен общей формулы: где R - алкил, R- водород и/или алкил, включающий проведение реакции синтеза 2-(алкилтио)алкиламина и...
Тип: Изобретение
Номер охранного документа: 0002470707
Дата охранного документа: 27.12.2012
19.06.2019
№219.017.8a2c

Способ получения полидициклопентадиена и материалов на его основе

Изобретение относится к способу получения полидициклопентадиена (ПДЦПД) и способу получения полимерных материалов на его основе. Описан способ получения ПДЦПД путем смешивания дициклопентадиена (ДЦПД) с катализатором при мольных соотношениях катализатора и ДЦПД от 1:70000 до 1:1000000 и...
Тип: Изобретение
Номер охранного документа: 0002402572
Дата охранного документа: 27.10.2010
19.06.2019
№219.017.8b9c

Катализатор полимеризации дициклопентадиена и способ его получения

Изобретение относится к области катализа и касается производства катализаторов полимеризации дициклопентадиена (ДЦПД). Описан катализатор полимеризации, имеющий общую формулу В структуре катализатора используется принципиально новый L-заместитель, обеспечивающий новые свойства катализатора....
Тип: Изобретение
Номер охранного документа: 0002462308
Дата охранного документа: 27.09.2012
06.03.2020
№220.018.09ce

Депрессорно-диспергирующая присадка к дизельным топливам и способ ее получения

Изобретение раскрывает депрессорно-диспергирующую присадку к дизельному топливу, содержащую смесь депрессорного и диспергирующего компонентов, при этом она в качестве депрессорного компонента содержит полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и...
Тип: Изобретение
Номер охранного документа: 0002715896
Дата охранного документа: 04.03.2020
21.06.2020
№220.018.296a

Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Изобретение относится к гидроразрыву нефтяного, газового и газоконденсатного пласта. В способе гидроразрыва нефтяного, газового или газоконденсатного пласта, включающем закачивание в пласт несущей жидкости гидроразрыва, добавление к несущей жидкости гидроразрыва расклинивающего полимерного...
Тип: Изобретение
Номер охранного документа: 0002723806
Дата охранного документа: 17.06.2020
20.05.2023
№223.018.6786

Связующее на основе дициклопентадиена для изготовления полимерных композиционных изделий методом намотки и способ его получения

Группа изобретений может быть использована при изготовлении полимерных композиционных изделий, таких как обсадные трубы, цистерны и баллоны. Способ получения связующего на основе дициклопентадиена (ДЦПД) для производства композиционных изделий методом намотки включает приготовление компонентов...
Тип: Изобретение
Номер охранного документа: 0002794495
Дата охранного документа: 19.04.2023
+ добавить свой РИД