×
21.06.2020
220.018.296a

Результат интеллектуальной деятельности: Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидроразрыву нефтяного, газового и газоконденсатного пласта. В способе гидроразрыва нефтяного, газового или газоконденсатного пласта, включающем закачивание в пласт несущей жидкости гидроразрыва, добавление к несущей жидкости гидроразрыва расклинивающего полимерного наполнителя, осуществляют закачку смеси расклинивающего полимерного наполнителя - проппанта, представляющего собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, и несущей жидкости гидроразрыва - гуаровом геле при концентрации проппанта от 40 до 600 кг/м с расходом закачки несущей жидкости гидроразрыва и смеси проппанта от 1,5 до 10 м/мин. Технический результат - обеспечение притока целевой продукции к скважине при отсутствии в ней воды из нецелевого пласта. 4 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к области нефтяной промышленности, а именно к способу гидроразрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием расклинивающего наполнителя (проппанта). Гидроразрыв пласта - это метод, используемый для интенсификации притока из нефтяных, газовых или газоконденсатных пластов. Он заключается в нагнетании в пласт жидкости со скоростью, достаточной для возникновения и распространения трещины разрыва от скважины в пласт. Мелкие частицы, называемые проппантом, добавляются в несущую жидкость и переносятся вниз по скважине, затем через перфорации - в трещину гидроразрыва. Когда нагнетание прекращается и закачанная жидкость вытекает через стенки трещины, расклинивающий наполнитель остается внутри трещины, предотвращая ее полное закрытие. Созданный канал высокой проводимости позволяет обойти поврежденные зоны около скважины и создать большую поверхность контакта с пластом.

Известен способ гидроразрыва пласта, который включает закачку гидроразрывной жидкости, содержащей частицы проппанта, через скважину в трещину, созданную в подземном пласте. В процессе закачки обеспечивают турбулентный режим течения жидкости в трещине посредством закачивания гидроразрывной жидкости с вязкостью менее 0,01 Па⋅с со скоростью закачки не менее 8 м3/мин. При этом гидроразрывная жидкость содержит частицы проппанта, радиус которых определяют по аналитическому выражению в случае, если частицы проппанта тяжелее жидкости, или по другому аналитическому выражению в случае, если частицы проппанта легче жидкости. В качестве частиц могут быть использованы частицы из любого материала, который как правило применяется в нефтесервисной индустрии как расклинивающий агент, например, песок, керамические частицы, гранулы полимера, частицы стекла и т.д. В качестве маловязкой жидкости может использоваться вода либо водный раствор полимера, а также любая другая маловязкая жидкость, как правило используемая при проведении гидроразрыва. RU 2402679 С1. опубл. 27.10.2010.

Известен способ гидроразрыва пластов, включающий тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта проведения гидроразрыва и проведение основного процесса гидроразрыва на пластах с проницаемостью не более 1 мД с применением проппанта только мелкой фракции - 30/60 меш и менее. Проведение гидроразрыва следует проводить с закачкой буферной жидкости («подушки») из расчета 1,0-3,0 м3 на 1 тонну проппанта, с применением фракций проппанта не крупнее 30/60 меш с конечной концентрацией проппанта не более 300 кг/м3, при прокачке поддерживают расход жидкости не менее 3,5 м3/мин для исключения гравитационного осаждения проппанта по причине малой вязкости жидкости разрыва. Концентрацию гелеобразователя устанавливают не более 2 кг/м3, с конечной недопродавкой смеси в объеме 0,1-0,5 м3. Предлагаемый способ позволяет ограничить развитие трещины в ширину. RU 2541974 С1, опубл. 20.02.2015.

Известен способ проведения гидроразрыва пласта, при котором сначала закачивают гелированную жидкость разрыва для создания трещины. Затем закачивают оставшийся объем гелированной жидкости разрыва с крепителем трещин. В качестве крепителя трещин применяют сверхлегкий проппант фракции 20/40 меш, постепенно увеличивая концентрацию проппанта в жидкости разрыва от 200 кг/м3 до 1000 кг/м3. В качестве гелированной жидкости разрыва применяют линейный гель с одновременным добавлением боратного сшивателя и деструктора. После завершения закачки гелированной жидкости разрыва с крепителем трещин производят их продавку в пласт технологической жидкостью. Производят выдержку в течение времени, необходимого для спада давления закачки на 70-80% от давления продавки в пласт гелированной жидкости разрыва с крепителем трещин. RU 2485306 С1, опубл. 20.06.2013.

К недостаткам предложенных способов можно отнести низкую нефтеотдачу после выполнения ГРП вследствие того, что закачка с высокими расходами для поддержания трбулентного течения жидкости разрыва в трещине или применение гелеобразователей для загущения жидкости разрыва, направленные на снижение гравитационного осаждения проппанта в трещине, приводят к высоким значениям давления жидкости в трещине и росту трещины по вертикали в нецелевые пласты, что в свою очередь в последующем приводит к притоку к скважине флюидов из нецелевых пластов.

Наиболее близким по технической сущности является способ гидравлического разрыва нефтяного или газового пласта с использованием расклинивающего наполнителя-проппанта, включающий нагнетание в нефтяной пласт жидкости с высокой скоростью и добавление в жидкость расклинивающего наполнителя-проппанта, в качестве расклинивающего наполнителя применяют материал ПолиДиЦиклоПентаДиен (полиДЦПД), который является сверхлегким проппантом. При этом частицы материала полиДЦПД могут иметь различную форму, например, сферическую, удлиненную, многоугольную, кубическую, могут быть выполнены в виде волокон. Наполнитель из материала полиДЦПД может быть дополнительно упрочнен с помощью заполняющего материала, например, глины, или двуокиси кремния, или керамики, или волокнами. RU 2386025 С1, опубл. 10.04.2010.

Основным недостатком заявленного способа является низкая прочность полиДЦПД при сжатии, не превышающая 60 МПа. Также известна низкая стойкость (быстрое набухание, размягчение и разрушение, потеря пористости проппантой пачки) полиДЦПД в ароматических углеводородах (толуоле, ксилоле и др.), содержащихся в нефти, что приводит к полной потере проводимости и проницаемости за 48 ч в условиях контакта с углеводородной средой, US 5019544 А, опубл. 28.05.1991, и то, что температура стеклования полиДЦПД «Noveon» ®компании "Telene®DCPD" не превышает 169°C, компании «Metton®DCPD» - 139°C, Совокупность указанных факторов оказывает критическое негативное влияние на долговременную проводимость и проницаемость проппантной пачки в углеводородной среде в пластовых условиях (высокие температуры, продолжительность контакта с углеводородной средой и давление). Заявленная долговременная (долгосрочная) проводимость 1938 мД⋅метр (6358 мД⋅фут) достигается при низком напряжении смыкания 6,9 МПа и комнатной температуре, что не соответствует реальным пластовым условиям нефтяных, газовых и газоконденсатных месторождений. Упрочнение проппанта полиДЦПД волокнами или с помощью заполняющего материала: глины или двуокиси кремния, или керамики не может улучшить химическую стойкость проппанта в углеводородах нефти, а имеет негативный эффект в виде увеличения плотности проппанта и потери нейтральной плавучести в жидкостях разрыва.

Технической задачей является разработка способа гидроразрыва нефтяного газового или газоконденсатного пласта, использующего полимерный проппант повышенной прочности, полученный в результате метатезисной и радикальной полимеризации олигоциклопентадиенов. Олигоциклопентадиены представляют собой смесь димеров, тримеров, тетрамеров циклопентадиена, полученную в результате термической олигомеризации дициклопентадиена при температуре от 150 до 220°C.

Технический результат, достигаемый от реализации заявленного технического решения, заключается в обеспечении притока целевой продукции к скважине при отсутствии в ней флюидов (воды, газа) из нецелевого пласта.

Технический результат достигается тем, что в способе гидроразрыва нефтяного газового или газоконденсатного пласта, включающем закачивание в нефтяной пласт несущей жидкости гидроразрыва, добавление к несущей жидкости гидроразрыва расклинивающего полимерного наполнителя, согласно изобретению, осуществляют закачку смеси расклинивающего полимерного наполнителя - проппанта, представляющего собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, в несущем линейном или сшитом гуаровом геле при концентрации проппанта от 40 до 600 кг/м3 и расходом закачки смеси в диапазоне от 1,5 до 10 м3/мин.

Достижению технического результата также способствует то, что применяют линейный гуаровый гель, приготовленный на пресной или соленой воде или сшитый гуаровый гель, приготовленный на пресной или соленой воде.

Используют полимерный проппант в виде сферических гранул, представляющий собой материал, полученный в результате метатезисной и радикальной полимеризации олигоциклопентадиенов, по способам, изложенным в патентных публикациях: RU 2523320, RU 2552750, а также полученный в результате метатезисной и радикальной полимеризации олигоциклопентадиенов с добавками: эфиров метилкарбоксинорборнена и метакрилатов, по способам, изложенным в патентных публикациях: RU 2524722, RU 2527453 и RU 2523321.

Материал из метатезис-радикально сшитой смеси олигоциклопентадиенов обладает теплостойкостью, превышающей 300°C, прочностью при сжатии 200-260 МПа, модулем упругости при сжатии 2,2-2,4 ГПа. Результаты набухания проппанта при длительной выдержке (в течение 2 лет) в углеводородной среде показаны на фиг. 1, на которой приведен график зависимости набухания материала проппанта в толуоле и пентане. Набухание материала проппанта в толуоле не превышает 0,8%, и 0,4% в пентане.

На фиг. 2 приведен график проводимости проппантной пачки. Долгосрочная проводимость проппантной пачки при площадной концентрации 4 кг/м2, при напряжении смыкания 30 МПа и температуре 121°C достигает 16000 мД⋅фут. Такие высокие эксплуатационные свойства достигаются при плотности материала полимерного проппанта, близкой к плотности воды и лежащей в пределах. 1,04-1,06 г/см3.

По сравнению с материалом проппанта полиДЦПД (RU 2386025) материал проппанта, полученный в результате метатезисной и радикальной полимеризации олигоциклопентадиенов, обладает значительно большей теплостойкостью, прочностью при сжатии и химической стойкостью в углеводородной среде. Высокая механическая прочность, долгосрочная проводимость и проницаемость расклинивающего наполнителя в совокупности с низкой плотностью (близкой к плотности воды), обеспечивают возможность его применения для выполнения гидроразрыва пласта на маловязких жидкостях гидроразрыва, что обеспечивает при гидроразрыве развитие трещины в пределах целевого пласта и в последующем при эксплуатации скважины приток к скважине флюида из целевого пласта при отсутствии в ней флюидов из нецелевых пластов.

Заявляемый способ гидравлического разрыва пласта заключается в нагнетании в скважину смеси, состоящей из несущей жидкости разрыва и расклинивающего, полимерного проппанта повышенной прочности - материала, полученного в результате метатезисной и радикальной полимеризации олигоциклопентадиенов. Гидравлический разрыв пласта начинается с закачки в скважину жидкости без проппанта. В определенный момент частицы расклинивающего наполнителя добавляют к несущей жидкости, в качестве которой используют линейный гуаровый гель, приготовленный на пресной или соленой воде, сшитый гуаровый гель, приготовленный на пресной или соленой воде. Диапазон расхода закачки смеси от 1,5 до 10 м3/мин позволяет в процессе ГРП эффективно компенсировать утечки воды из объема трещины в пласт, успешно создавая трещину гидроразрыва, как в высоко-, так и в низкопроницаемых нефтяных пластах. Диапазон концентрации проппанта в смеси от 40 до 600 кг/м3 достаточен для необходимого распределения проппанта по площади трещины в процессе создания трещины и толщины закрепленной трещины ГРП, обеспечивающей в последствии в процессе эксплуатации скважины в режиме добычи приток целевой продукции к скважине при отсутствии в ней флюидов из нецелевых пластов.

При этом, последовательность закачки и концентрацию полимерного проппанта определяют по результатам математического моделирования данного процесса в специализированном программном обеспечении (симуляторах гидроразрыва пласта), к примеру «РН-ГРИД» (свидетельство о государственной регистрации программы для ЭВМ №2017611238), обеспечивающем физически достоверный учет эффекта всплытия проппанта, имеющего плотность меньше плотности несущей жидкости и гравитационного оседания проппанта, имеющего плотность больше плотности жидкости разрыва, при расчете двухмерной гидродинамической задачи переноса проппанта в плоскости трещины в процессе гидроразрыва пласта.

Примеры конкретного выполнения.

Пример 1

Проводят ГРП в вертикальной нефтяной скважине на терригенный пласт, с эффективной толщиной пласта равной 7,3 м и средней абсолютной проницаемостью 7,6 мД. Абсолютная глубина пласта составляет 1883,6 м. На расстоянии 5,1 м от нижней глубины пласта, на глубине 1896 имеется водонасыщенный нецелевой пласт.

Параметры скважины (конструкция):

- диаметр обсадной колонны - 168 мм, абсолютная глубина спуска 1935,6 м;

- абсолютные глубины перфорации - 1883,5-1890,3 м.

Материалы закачки:

- жидкость ГРП - линейный гуаровый гель с загрузкой гелеобразующего агента 4,0 кг/м3 приготовленный на пресной воде;

- проппант - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 массой 7200 кг.

Технические параметры осуществления ГРП:

Перед началом всех работ произвели замену жидкости в скважине на линейный гуаровый гель. Объем закачки составил 10,5 м3. Расход закачки 10 м3/мин. Максимальное давление закачки составило 27,2 МПа. Конечное давление закачки 17,6 МПа.

Далее выполнили миниГРП. Закачали 500 кг керамического проппанта ForeProp фракции 16/20 меш на линейном гуаровом геле для прочистки дыр перфорации и снижения потерь на трение. Объем закачки жидкости составил 12,6 м3. Расход закачки равен 10 м3/мин. Среднее устьевое давление закачки составило 17,9 МПа. Конечное давление остановки закачки 18,1 МПа.

Параметры определенные по миниГРП:

- устьевое мгновенное давление остановки насосов (ISIP) 10,9 МПа;

- забойное давление закрытия трещины 25,3 МПа;

- чистое давление 4,5 МПа;

- эффективность жидкости 72%.

После проведения миниГРП приступили к выполнению основного процесса гидроразрыва. Закачка проводилась слаговыми стадиями по 600 кг в 12 стадий. Закачали 7200 кг проппанта - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 меш. Концентрация проппанта на слаговых стадиях составила 40 кг/м3. Объем закаченной жидкости составил 351,7 м3. Расход закачки 10 м3/мин. Среднее устьевое давление закачки составило 17,1 МПа. Устьевое давление остановки закачки 17,3 МПа. В пласт закачено 6900 кг проппанта.

По результату выполненного ГРП и моделирования основной закачки получена геометрия трещина с полудлиной равной 587 м, высотой 51 м и средней закрепленной шириной 1,47 мм. Средняя проводимость трещины по данным моделирования составляет 127 мД*м.

Геомеханические свойства пластов приняты по данным ранее выполненных работ на соседних скважинах, которые были уточнены по результатам миниГРП и составили следующие величины: модуль Юнга для песчаников 10,9 ГПа, для глинистых пород 15,1 ГПа, коэффициент Пуассона для песчаных пород 0,24 для глинистых пород 0,29.

Фактические данные закачки были использованы для моделирования дизайна трещины с целью оценки определения фактически полученной геометрии трещины, по результатам которого установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло.

Лабораторный анализ притока добываемой нефти также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Пример 2

Проводят ГРП в вертикальной газовой скважине на терригенный пласт, с эффективной толщиной пласта равной 21,2 м и средней абсолютной проницаемостью 2,1 мД. Абсолютная глубина пласта составляет 1607 м. На расстоянии 6,6 м от нижней глубины пласта, на глубине 1634,8 м имеется водонасыщенный пласт.

Параметры скважины (конструкция):

- диаметр обсадной колонны - 168 мм, абсолютная глубина спуска 1822,7 м;

- абсолютные глубины перфорации - 1615,0-1620,9 м.

Материалы закачки:

- жидкость ГРП - линейный гуаровый гель с загрузкой гелеобразующего агента 3,6 кг/м3, приготовленный на соленой воде с плотностью 1075 кг/м3;

- проппанты - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 массой 7600 кг и фракции 10/16 массой 6400 кг. Всего проппанта 14000 кг.

Технические параметры осуществления ГРП:

Перед началом всех работ произвели замену жидкости в скважине на линейный гуаровый гель. Объем закачки составил 9 м3. Расход закачки 3,8 м3/мин. Максимальное давление закачки составило 22 МПа. Конечное давление закачки 14 МПа.

Далее выполнили миниГРП. Закачали 500 кг керамического проппанта ForeProp фракции 16/20 меш на линейном гуаровом геле для прочистки дыр перфорации и снижения потерь на трение. Объем закачки жидкости составил 28,7 м3. Расход закачки равен 3,8 м3/мин. Среднее устьевое давление закачки составило 11 МПа. Конечное давление остановки закачки 12,6 МПа.

Параметры определенные по миниГРП:

- устьевое мгновенное давление остановки насосов (ISIP) 4,4 МПа;

- забойное давление закрытия трещины 18,2 МПа;

- чистое давление 2,4 МПа;

- эффективность жидкости 21%.

После проведения миниГРП приступили к выполнению основного процесса. Закачали 14000 кг проппанта - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 и 20/40 меш. Концентрация проппанта составила 400 кг/м3, объем стадии «подушка» - 35 м3. Объем закаченной жидкости составил 99,3 м3. Расход закачки 3,8 м3/мин. Среднее устьевое давление закачки составило 12 МПа. Устьевое давление остановки закачки 16,8 МПа. В пласт закачено 13700 кг проппанта.

По результату выполненного ГРП и моделирования основной закачки получена геометрия трещина с полудлиной равной 108 м, высотой 18 м и средней закрепленной шириной 10,04 мм. Средняя проводимость трещины по данным моделирования составляет 1330 мД*м.

Геомеханические свойства пластов приняты по данным ранее выполненных работ на соседних скважинах, которые были уточнены по результатам миниГРП и составили следующие величины: модуль Юнга для песчаников 5,5 ГПа, для глинистых пород 7,2 ГПа, коэффициент Пуассона для песчаных пород 0,24 для глинистых пород 0,32.

Фактические данные закачки были использованы для моделирования дизайна трещины с целью оценки определения фактически полученной геометрии трещины, по результатам которого установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло.

Лабораторный анализ притока добываемого газа также показал, что добыча ведется только с целевого пласта ГРП, приток воды из нецелевого пласта отсутствует.

Пример 3

Проводят ГРП в вертикальной газоконденсатной скважине на терригенный пласт, с эффективной толщиной пласта равной 12,1 ми средней абсолютной проницаемостью 9,2 мД. Абсолютная глубина пласта составляет 1798,6 м. На расстоянии 4,6 м от нижней глубины пласта, на глубине 1815,3 имеется водонасыщенный пласт.

Параметры скважины (конструкция):

- диаметр обсадной колонны - 168 мм, абсолютная глубина спуска 1834,7 м;

- абсолютные глубины перфорации - 1800,0-1810,5 м.

Материалы закачки:

- жидкость ГРП - сшитый гуаровый гель с загрузкой гелеобразующего агента 2,4 кг/м3 приготовленный на пресной воде;

- проппант - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 массой 21000 кг и фракции 10/16 массой 19000 кг. Всего проппанта 40000 кг.

Технические параметры осуществления ГРП:

Перед началом всех работ произвели замену жидкости в скважине на линейный гуаровый гель. Объем закачки составил 13,1 м3. Расход закачки 3,8 м3/мин. Максимальное давление закачки составило 12,6 МПа. Конечное давление закачки 7,9 МПа.

Далее выполнили миниГРП. Закачали 500 кг керамического проппанта ForeProp фракции 16/20 меш на сшитом гуаровом геле для прочистки дыр перфорации и снижения потерь на трение. Объем закачки жидкости составил 20,6 м3. Расход закачки равен 3,8 м3/мин. Среднее устьевое давление закачки составило 6,7 МПа. Конечное давление остановки закачки 6,9 МПа.

Параметры определенные по миниГРП:

- устьевое мгновенное давление остановки насосов (ISIP) 1,9 МПа;

- забойное давление закрытия трещины 14,9 МПа;

- чистое давление 2,6 МПа;

- эффективность жидкости 35%.

После проведения миниГРП приступили к выполнению основного процесса. Закачали 40000 кг проппанта - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 и 20/40 меш. Концентрация проппанта составила 600 кг/м3, объем стадии «подушка» - 60 м3. Объем закаченной жидкости составил 199,3 м3. Расход закачки 3,8 м3/мин. Среднее устьевое давление закачки составило 6,8 МПа. Устьевое давление остановки закачки 7,3 МПа. В пласт закачено 39700 кг проппанта.

По результату выполненного ГРП и моделирования основной закачки получена геометрия трещина с полудлиной равной 184 м, высотой 33 м и средней закрепленной шириной 6,62 мм. Средняя проводимость трещины по данным моделирования составляет 537 мД*м.

Геомеханические свойства пластов приняты по данным ранее выполненных работ на соседних скважинах, которые были уточнены по результатам миниГРП и составили следующие величины: модуль Юнга для песчаников 4,2 ГПа, для глинистых пород 7,1 ГПа, коэффициент Пуассона для песчаных пород 0,23 для глинистых пород 0,28.

Фактические данные закачки были использованы для моделирования дизайна трещины с целью оценки определения фактически полученной геометрии трещины, по результатам которого установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло.

Лабораторный анализ притока добываемой продукции также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Пример 4

Проводят ГРП в вертикальной нефтяной скважине на терригенный пласт с эффективной толщиной пласта равной 22 м и средней абсолютной проницаемостью 3,4 мД. Абсолютная глубина пласта составляет 1638 м. На расстоянии 11 м от нижней глубины пласта, на глубине 1671,8 м имеется водонасыщенный пласт.

Параметры скважины (конструкция):

- диаметр обсадной колонны - 168 мм, абсолютная глубина спуска 1742,3 м;

- абсолютные глубины перфорации - 1641,5-1654,6 м.

Материалы закачки:

- жидкость ГРП - сшитый гуаровый гель с загрузкой гелеобразующего агента 2,0 кг/м3 приготовленный на соленой воде с плотностью 1073 кг/м3;

- проппант - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20, массой 20000 кг.

Технические параметры осуществления ГРП:

Перед началом всех работ произвели замену жидкости в скважине на линейный гуаровый гель. Объем закачки составил 12 м3. Расход закачки 1,5 м3/мин. Максимальное давление закачки составило 25 МПа. Конечное давление закачки 25 МПа.

Далее выполнили миниГРП. Закачали 500 кг керамического проппанта ForeProp фракции 16/20 меш на сшитом гуаровом геле для прочистки дыр перфорации и снижения потерь на трение. Объем закачки жидкости составил 18 м3. Расход закачки равен 1,5 м3/мин. Среднее устьевое давление закачки составило 12 МПа. Конечное давление остановки закачки 12,3 МПа.

Параметры определенные по миниГРП:

- устьевое мгновенное давление остановки насосов (ISIP) 8,1 МПа;

- забойное давление закрытия трещины 14,5 МПа;

- чистое давление 4,0 МПа;

- эффективность жидкости 51%.

После проведения миниГРП приступили к выполнению основного процесса. Закачали 20000 кг проппанта - материал из метатезис-радикально сшитой смеси олигоциклопентадиенов фракции 16/20 меш. Концентрация проппанта составила 400 кг/м3, объем стадии «подушка» - 40 м3. Общий объем закаченной жидкости составил 189 м3. Расход закачки 1,5 м3/мин. Среднее устьевое давление закачки составило 12,5 МПа. Устьевое давление остановки закачки 13,2 МПа. В пласт закачено 19700 кг проппанта.

По результату выполненного ГРП и моделирования основной закачки получена геометрия трещина с полудлиной равной 199 м, высотой 28 м и средней закрепленной шириной 2,31 мм. Средняя проводимость трещины по данным моделирования составляет 790 мД*м.

Геомеханические свойства пластов приняты по данным ранее выполненных работ на соседних скважинах, которые были уточнены по результатам миниГРП и составили следующие величины: модуль Юнга для песчаников 12 ГПа, для глинистых пород 16ГПа, коэффициент Пуассона для песчаных пород 0,21 для глинистых пород 0,32.

Фактические данные закачки были использованы для моделирования дизайна трещины с целью оценки определения фактически полученной геометрии трещины, по результатам которого установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло.

Лабораторный анализ притока добываемой нефти также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.


Способ гидроразрыва нефтяного, газового или газоконденсатного пласта
Источник поступления информации: Роспатент

Показаны записи 1-10 из 63.
26.08.2017
№217.015.e958

Катализатор изодепарафинизации углеводородного сырья с10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации, а также способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с...
Тип: Изобретение
Номер охранного документа: 0002627770
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.08a3

Гидравлическое масло арктического назначения

Гидравлическое масло арктического назначения с улучшенными низкотемпературными свойствами, предназначено для использования в гидравлических системах строительно-дорожных машин, экскаваторах, бульдозерах, снегоходах, буровых установках и другой технике, которая должна сохранять работоспособность...
Тип: Изобретение
Номер охранного документа: 0002631659
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.15bc

Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу. Проводят реакцию радикальной сополимеризации малеинового ангидрида и широкой фракции 1-олефинов C-C при соотношении исходных реагентов от 1:0,92 до 1:3,7. Реакцию...
Тип: Изобретение
Номер охранного документа: 0002635107
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.36aa

Способ получения мезопористой наноструктурированной пленки металло-оксида методом электростатического напыления

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с...
Тип: Изобретение
Номер охранного документа: 0002646415
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3c8d

Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу. Проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии...
Тип: Изобретение
Номер охранного документа: 0002647858
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.4120

Сенсибилизированный красителем металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ). Наиболее успешно настоящее изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002649239
Дата охранного документа: 30.03.2018
09.06.2018
№218.016.5f51

Способ получения синтетической нефти

Настоящее изобретение относится к способу получения синтетической нефти из продуктов синтеза Фишера-Тропша, включающий гидрирование смеси синтетических углеводородов в реакторе с неподвижным слоем никельсодержащего катализатора в токе газа гидрирования, включающего моноксид углерода и водород....
Тип: Изобретение
Номер охранного документа: 0002656601
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.614c

Фотосенсибилизатор для солнечных элементов

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным...
Тип: Изобретение
Номер охранного документа: 0002657084
Дата охранного документа: 08.06.2018
01.07.2018
№218.016.697c

Способ получения циклопентана

Изобретение относится к способу получения циклопентана, включающему последовательно осуществляемые частичное и исчерпывающее гидрирование циклопентадиена в растворителе в присутствии катализатора. Способ характеризуется тем, что частичное гидрирование ведут при температуре 10…40°С, давлении...
Тип: Изобретение
Номер охранного документа: 0002659227
Дата охранного документа: 29.06.2018
10.07.2018
№218.016.6ee7

Способ определения величины максимального горизонтального напряжения нефтегазового пласта

Изобретение относится к нефтегазовой промышленности и может быть использовано для определения величины максимального горизонтального напряжения в продуктивных пластах нефтегазовых месторождений для выбора оптимальной технологии бурения и эксплуатации скважин. Способ включает проведение...
Тип: Изобретение
Номер охранного документа: 0002660702
Дата охранного документа: 09.07.2018
Показаны записи 1-10 из 65.
27.10.2013
№216.012.7acf

Атомно-абсорбционный спектрометр, основанный на эффекте зеемана

Изобретение относится к аналитическому приборостроению и может быть использовано для определения содержания химических элементов в пробах различных типов методом атомно-абсорбционной спектрометрии. Спектрометр содержит оптически связанные источник излучения с длиной волны, соответствующей...
Тип: Изобретение
Номер охранного документа: 0002497101
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7d89

Способ получения n,n-диарилзамещенных 2-трихлорометилимидазолидинов

Настоящее изобретение относится к области органической химии, а именно к способу получения N,N-диарилзамещенных 2-трихлорометилимидазолидинов, который заключается во взаимодействии 2,4,6-триметиланилина или 2,4-диизопропиланилина или 2,4-диметиланилина с триэтилортоформиатом в присутствии...
Тип: Изобретение
Номер охранного документа: 0002497810
Дата охранного документа: 10.11.2013
10.05.2014
№216.012.c15b

Способ получения изделий из полидициклопентадиена центробежным формованием

Изобретение относится к химии, к полимерным материалам. Описан способ получения полимерных изделий на основе полидициклопентадиена центробежным формованием, включающий смешивание дициклопентадиена с рутенийсодержащим катализатором и модифицирующими добавками, помещение смеси в форму, вращение...
Тип: Изобретение
Номер охранного документа: 0002515248
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c2cd

Способ разработки нефтяных низкопроницаемых залежей с применением горизонтальных скважин с поперечно-направленными трещинами гидроразрыва пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке чисто нефтяных залежей с низкопроницаемыми коллекторами. Обеспечивает снижение темпов падения добычи нефти добывающими скважинами и увеличение коэффициента извлечения нефти. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002515628
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.e0be

Полимерный проппант и способ его получения

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С,...
Тип: Изобретение
Номер охранного документа: 0002523320
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0bf

Материал для проппанта и способ его получения

Изобретение относится к производству проппантов, используемых при добыче нефти и газа. Способ получения материала для проппанта включает получение смеси олигоциклопентадиенов с содержанием тримеров и тетрамеров 5-60 мас.% путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при...
Тип: Изобретение
Номер охранного документа: 0002523321
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e62e

Способ определения застойных и слабодренируемых нефтяных зон в низкопроницаемых коллекторах

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных низкопроницаемых месторождений. Техническим результатом является определение местоположения застойных и слабодренируемых нефтенасыщенных участков нефтяных низкопроницаемых залежей. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002524719
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e631

Полимерный проппант повышенной термопрочности и способ его получения

Группа изобретений относится к нефте-, газодобыче с использованием проппантов из полимерных материалов. Способ получения полимерного проппанта повышенной термопрочности, включающий смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из приведенной группы, и,...
Тип: Изобретение
Номер охранного документа: 0002524722
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7bd

Каталитическая система процесса тримеризации этилена в альфа-олефины

Изобретение относится к технологии селективного получения 1-гексена тримеризацией этилена. Изобретение направлено на повышение селективности катализатора по 1-гексену при сохранении высокой производительности каталитической системы и одновременном понижении количества побочно образующихся...
Тип: Изобретение
Номер охранного документа: 0002525118
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.f013

Композиционный материал на основе полидициклопентадиена, состав для получения матрицы и способ получения композиционного материала

Изобретение относится к химии высокомолекулярных соединений, в частности к композиционным материалам на основе полидициклопентадиена. Композиционный материал на основе полидициклопентадиена включает кремнийсодержащий неорганический наполнитель и полимерную матрицу, содержащую...
Тип: Изобретение
Номер охранного документа: 0002527278
Дата охранного документа: 27.08.2014
+ добавить свой РИД