×
12.09.2018
218.016.8645

Результат интеллектуальной деятельности: СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА

Вид РИД

Изобретение

№ охранного документа
0002666701
Дата охранного документа
11.09.2018
Аннотация: Изобретение относится к энергетике. Парогазовая установка состоит из двух контуров - внутреннего и внешнего и газоотводящего канала. Во внутреннем контуре расположен турбокомпрессор, во внешнем - теплообменник, охлаждающий воздух высокого давления, используемый для охлаждения турбокомпрессора. На выходе из внешнего контура установлена свободная турбина, на выходе из внутреннего контура - газовый канал, в котором расположены два теплообменника, преобразующие энергию выхлопных газов в энергию пара. Рабочим телом первого теплообменника является вода, второго - фреон. Водяной пар подается в камеру смешения, расположенную между камерой сгорания и турбиной турбокомпрессора. Это позволяет поддерживать в камере сгорания стехиометрический состав топливовоздушной смеси. Парообразный фреон подается в паровую турбину, которая является элементом замкнутого контура паросиловой установки. Изобретение позволяет повысить эффективный кпд установки. 5 з.п. ф-лы, 3 ил.

Изобретение относится к теплоэнергетике.

Многочисленные публикации посвящены газотурбинным установкам (ГТУ) различного назначения, используемым в авиации, наземном и морском транспорте, на газоперекачивающих станциях. В последние годы значительно возрос интерес к энергетическим ГТУ и ПТУ (парогазовые установки), их особенностям и работе на электростанциях. Парогазовые установки - единственные энергетические установки, которые в конденсационном режиме работы отпускают электроэнергию с эффективным к.п.д. более 58% (Газотурбинные и парогазовые установки тепловых электростанций: Учебное пособие для вузов / Под ред. С.В. Цанаева - М.: Издательство МЭИ, 2002. С. 3).

Целью изобретения является повышение эффективного к.п.д. парогазовых установок до 60÷65%.

Известна стехиометрическая парогазовая установка, состоящая из входного устройства, внутреннего контура, внутри которого расположен турбо-компрессор с камерой смешения, с газовым каналом, соединяющим контур с атмосферой, содержащим теплообменник-испаритель, с одной стороны соединенный с источником питательной воды, а с другой - с камерой смешения, внешнего контура, на выходе которого установлена свободная турбина, теплообменника-регенератора, расположенного за турбокомпрессором и соединяющего свободную турбину с воздушной полостью высокого давления (патент RU 2287708, 2006 г.).

Известны газотурбинные двигатели, у которых за свободной турбиной устанавливается диффузорный патрубок, позволяющий повышать перепад давлений в турбине больше, чем располагаемый (Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Ч. 2. М.: Машиностроение, 1978, с. 268, рис. 19.2).

Известны газовые эжекторы, способные понижать статическое давление на выходе из реактивного сопла (Г.Н. Абрамович. Прикладная газовая динамика. М.: Наука, 1976, с. 487, рис. 9.4).

Поставленная цель достигается тем, что в стехиометрической парогазовой установке, состоящей из входного устройства, внутреннего контура, внутри которого расположен турбокомпрессор с камерой смешения, с газовым каналом, соединяющим контур с атмосферой, содержащим теплообменник-испаритель, с одной стороны соединенный с источником питательной воды, а с другой - с камерой смешения, внешнего контура, на выходе которого установлена свободная турбина, теплообменника-регенератора, расположенного за турбокомпрессором и соединяющего свободную турбину с воздушной полостью высокого давления, установлен вентилятор, нагнетающий воздух во внутренний и внешний контуры, внутри газового канала расположен теплообменник конденсатор, соединенный с утилизатором тепловой энергии, свободная турбина соединена с газовым каналом на участке между теплообменником-испарителем и теплообменником-конденсатором, во внешнем контуре расположен теплообменник, канал высокого давления которого соединяет воздушную полость за компрессором с воздушными каналами турбины турбокомпрессора для ее охлаждения.

Сущность изобретения заключается в использовании внутренних термодинамических циклов, которые при тех же физических ограничениях позволяют увеличивать количество подводимой и уменьшать количество отводимой теплоты в тепловой машине (Письменный В.Л. Внутренние термодинамические циклы // М. - Конверсия в машиностроении. 2006, №3. С. 5÷10).

В ПГУ предпочтительно иметь:

коэффициент избытка воздуха в камере сгорания менее 1,1;

степень повышения давления воздуха в вентиляторе более 7;

суммарную степень повышения давления воздуха более 40;

внутри теплообменника-регенератора - эжектор;

керамические сопловые аппараты в турбине турбокомпрессора;

паросиловую установку в качестве утилизатора тепловой энергии.

На фиг. 1 показана стехиометрическая ПГУ.

на фиг. 2 показан термодинамический цикл стехиометрической ПГУ;

на фиг. 3 показаны зависимости параметров стехиометрической ПГУ от суммарной степени повышения давления воздуха.

Стехиометрическая ПГУ (фиг. 1) состоит из входного устройства 1, вентилятора 2, внутреннего и внешнего контуров, газового канала 3, утилизатора тепловой энергии.

Во внутреннем контуре расположены: турбокомпрессор 4, полость низкого давления теплообменника-регенератора 5, эжектор 6 (расположен внутри теплообменника 5 - охватывает выходное сечение турбокомпрессора). Между камерой сгорания и турбиной турбокомпрессора расположена камера смешения 7.

Во внешнем (втором) контуре расположены: теплообменник 8, полость высокого давления теплообменника-регенератора 5, свободная турбина 9. Внутренние каналы теплообменника 8 с одной стороны соединены с воздушной полостью за компрессором турбокомпрессора, с другой - с воздушными каналами турбины турбокомпрессора.

В газовом канале 3, соединяющем полость низкого давления теплообменника 5 с атмосферой, расположены: теплообменник-испаритель 10 и теплообменник-конденсатор 11. Полость высокого давления теплообменника-регенератора 5 соединена с газовым каналом 3 через турбину 9 на участке между теплообменниками 10 и 11.

Утилизатор тепловой энергии состоит из теплообменника-конденсатора 11, паровой турбины 12, теплообменника-конденсатора 13 и насоса (н), которые закольцованы. Внутри закольцованной системы циркулирует фреон R22. Теплообменник 13 омывается проточной водой, часть которой насосом высокого давления (н) подается в теплообменник 10.

Вентилятор 2 соединен с турбокомпрессором 4 через редуктор (Р).

Работа стехиометрической ПГУ осуществляется следующим образом. Турбокомпрессор 4 приводит в действие вентилятор 2, который нагнетает воздух во внутренний и внешний контуры установки.

Во внутреннем контуре к воздуху подводится энергия топлива Q1, часть которой в виде теплоты (через теплообменник 8) и работы (через вентилятор 2) передается во внешний контур установки. Воздух, отбираемый от компрессора для охлаждения турбины, проходит через канал высокого давления теплообменника 8 и отдает часть теплоты воздуху внешнего контура. Вентилятор 2, сжимает воздух, часть которого поступает во внешний контур. Оставшаяся теплота в виде энергии истекающего газа поступает в полость низкого давления теплообменника-регенератора 5.

Сжатый и нагретый воздух внешнего контура поступает в полость высокого давления теплообменника-регенератора 5.

Работа теплообменника-регенератора осуществляется следующим образом. Горячий газ из турбокомпрессора истекает в эжектор 6. Статическое давление в плоскости выходного сечения турбокомпрессора ниже, чем давление в полости низкого давления теплообменника 5, которое близко к атмосферному. В результате разницы давлений снаружи и внутри эжектора 6 происходит циркуляция газа внутри полости низкого давления теплообменника 5, которая интенсифицирует теплообменные процессы. Технические возможности теплообменника-регенератора определяются техническими возможностями циркуляционного теплообменника (патент RU 2607916, 2017 г.), т.е. при определенных условиях разница в температурах газа и воздуха, выходящих из теплообменника-регенератора 5, может быть сведена к минимуму (20÷30 градусов). Еще один плюс от применения теплообменника-регенератора 5 - это возможность использования эффекта перерасширения газа в турбине, когда статическое давление за турбиной искусственным образом понижается ниже атмосферного с последующим его повышением с отводом теплоты.

Воздух высокого давления, нагретый в теплообменнике 5, поступает в ресивер турбины 9, где расширяется - совершает работу, после чего истекает в газовый канал 3.

Газ низкого давления из теплообменника 5 поступает в газовый канал 3, где часть теплоты газа отдается теплообменнику-испарителю 10. В канале высокого давления теплообменника 10 движется вода, которая при нагреве превращается в насыщенный пар. Пар поступает в камеру смешения 7 турбокомпрессора. Количество воды (пара) выбирается из условия обеспечения стехиометрического состава топливовоздушной смеси в камере сгорания турбокомпрессора.

После теплообменника 10 газ, движущийся по каналу 3, смешивается с воздухом, истекающим из турбины 9. Образовавшаяся смесь (выхлопные газы) поступает в теплообменник-конденсатор 11. В теплообменнике-конденсаторе 11 происходит передача теплоты выхлопных газов фреону R22, который циркулирует в канале высокого давления теплообменника 11. При охлаждении выхлопных газов выделяется конденсат (вода, используемая в теплообменнике 10), который вместе с выхлопными газами удаляется в атмосферу.

Работа утилизатора теплоты осуществляется следующим образом.

Критическим давлением и критической температурой фреона R22 являются: Ркр=5 МПа и Ткр=96°С, соответственно. Фреон под критическим давлением насосом (н) подается в канал высокого давления теплообменника 11, где нагревается до критической температуры. В паровой турбине 12 фреон расширяется до давления, при котором происходит его конденсация в теплообменнике 13. Турбина 12 совершает работу. Теплота, выделившаяся при конденсации, отводится проточной водой (начальная температура ~ 15°С; конечная ~ 30°С). Охлажденный фреон сжимается насосом (н). Цикл повторяется.

Питательная вода насосом (н) подается в теплообменник-испаритель 10.

На фиг. 2 в Р-υ координатах показан термодинамический цикл стехиометрической ПГУ (фиг. 1). Цикл состоит из внешнего цикла 1 (цикл Брайтона) и двух внутренних циклов: 2 (цикл Брайтона) и 3 (цикл Ренкина). Внешний цикл имеет энергообмен с внешней средой, внутренние - с внешним циклом. К внешнему циклу подводится теплота Q1, отводится - Qr. Термический к.п.д. стехиометрической ПГУ определяется как ηt=1-Qr/Q1.

Сущность изобретения заключается в том, что одновременно используются два фактора повышающие эффективность тепловой машины: а) стехиометрический состав топливовоздушной смеси; б) внутренние термодинамические циклы. Стехиометрический состав топливовоздушной смеси позволяет максимально увеличить количество подводимой теплоты Q1. Внутренние термодинамические циклы позволяют максимально уменьшить количество отводимой теплоты Qr. И то, и другое повышает термический к.п.д. тепловой машины и, как следствие, - эффективный к.п.д.

Стехиометрический состав топливовоздушной смеси в камере сгорания ПГУ обеспечивается наличием в схеме ПГУ (фиг. 1) камеры смешения 7, которая защищает лопатки турбины от перегрева (тепловая энергия распределяется на большую массу газа) при любом составе топливовоздушной смеси, включая стехиометрический. Применение камеры смешения позволяет повысить максимальную температуру газа во внешнем цикле (фиг. 2) до температуры газа в камере сгорания Ткс*, которая выше температуры газа перед турбиной Тг* (фиг. 2). Из термодинамики известно, что повышение максимальной температуры газа в цикле Брайтона повышает его работу и к.п.д., что, собственно, и происходит в стехиометрической ПГУ.

Эффективность применения внутренних термодинамических циклов -прямое следствие законов термодинамики. В соответствии с первым законом термодинамики теплота Q1 тратится на работу внешнего цикл 1, внутренних циклов 2 и 3 (работа циклов определяется с учетом расхода рабочих тел), тепловые потери Qr. При отсутствии внутренних циклов 2 и 3 та же теплота Q1 будет тратиться на работу внешнего цикла 1 и потери Qr, из чего следует, что при отсутствии внутренних циклов потери Qr увеличиваются на величину работы этих циклов.

Тепловые потоки, имеющие место в стехиометрической ПГУ, показаны на фиг. 2. К внешнему циклу подводится теплота Q1 (процесс к-г). Часть этой теплоты преобразуется в работу Lц1, которая используется для сжатия рабочих тел внутренних циклов, в том числе в насосах (н). Другая часть теплоты (Q1-2 и Q1-3) передается во внутренние циклы, в которых преобразуется в работу Lц2 и Lц3. Нереализованная во внутренних циклах теплота Q2-1 и Q3-1 возвращается (условно) внешнему циклу, после чего рассеивается в атмосфере в виде теплоты Qr. Небольшая часть теплоты Q1-1 регенерируется во внешнем цикле.

На фиг. 3 показаны характеристики стехиометрической ПГУ (фиг. 1) в зависимости от суммарной степени повышения давления воздуха π. Условные обозначения: πВ - степень повышения давления воздуха в вентиляторе, πк - степень повышения давления воздуха в компрессоре; m - степень двухконтурности; mв - относительный расход воды (по отношению к расходу воздуха через внутренний контур); mф - относительный расход фреона (аналогично); Тв* - температура воздуха на выходе из вентилятора; Тк* - температура воздуха на выходе из компрессора; Ткс* - температура газа на выходе из камеры сгорания; Тг* - температура газа на входе в турбину турбокомпрессора; Твг* - температура воздуха на входе в свободную турбину; tвх - температура газа на входе в утилизатор тепловой энергии; tвых - температура газа на выходе из утилизатора тепловой энергии; ηe∑ - суммарный эффективный к.п.д. ПГУ, ηе - эффективный к.п.д. ПГУ (без утилизатора тепловой энергии).

Исходные данные ПГУ: внешние условия стандартные; топливо - керосин; рабочее тело утилизатора энергии - фреон R22; коэффициент избытка воздуха в камере сгорания - 1,05; степень повышения давления в вентиляторе - 8; температура газа перед турбиной - 2400 К; температура лопаток первой ступени турбины - 1250 К; коэффициент интенсивности охлаждения лопаток турбины - 0,65; отбор воздуха на охлаждение турбины - 18%; к.п.д. вентилятора - 0,83; к.п.д. компрессора - 0,83; к.п.д. турбины турбокомпрессора - 0,96; к.п.д. свободной турбины - 0,95; к.п.д. паровой турбины - 0,9; механический к.п.д. - 0,99; полнота сгорания топлива - 0,99; коэффициент восстановления давления в камере сгорания - 0,98; коэффициенты восстановления давления в теплообменниках - 0,98.

Видно (фиг. 3), что метод внутренних термодинамических циклов (Письменный В.Л. Внутренние термодинамические циклы // М. - Конверсия в машиностроении. 2006, №3. С. 5÷10) в сочетании с авиационными технологиями ГТД пятого-шестого поколений (охлаждаемые монокристаллические лопатки, керамические сопловые аппараты, технология «blisk», высокие к.п.д. лопаточных машин и д.р.) позволяет создавать тепловые машины с эффективным к.п.д. 65 процентов и более, что дает основание считать стехиометрические ПГУ прорывной технологией в области теплоэнергетики.

Потребности общества в обеспечении энергией постоянно растут притом, что возможности увеличения добычи углеводородных топлив достигли своих пределов. В этих условиях создание энергосберегающих технологий становится актуальной задачей. В России, по мнению автора, следует принять программу по разработке и внедрению в народное хозяйство стехиометрических ПГУ. Это даст возможность при тех же расходах топлива повысить выработку электроэнергии на теплоэлектростанциях в 2÷3 раза.


СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
27.06.2014
№216.012.d6c8

Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный...
Тип: Изобретение
Номер охранного документа: 0002520762
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfd5

Парогазотурбинная установка

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002523087
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5ab

Дождевальная установка

Применение в качестве дождевальной установки, создающей облака, газотурбинного двигателя, содержащего турбокомпрессор, форсажную камеру, установленную вертикально относительно поверхности земли, внутри которой за зоной горения расположен водяной коллектор с форсунками, направленными по потоку...
Тип: Изобретение
Номер охранного документа: 0002528724
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa8f

Способ охлаждения газотурбинного двигателя

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим...
Тип: Изобретение
Номер охранного документа: 0002529989
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0eb9

Способ регулирования осевого компрессора в системе газотурбинного двигателя

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной...
Тип: Изобретение
Номер охранного документа: 0002535186
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.66d5

Противообледенительная система газотурбинного двигателя

Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения...
Тип: Изобретение
Номер охранного документа: 0002557878
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c974

Способ форсирования двухконтурного турбореактивного двигателя

Способ форсирования двухконтурного турбореактивного двигателя, заключающийся в подаче в основную камеру сгорания форсажного топлива. Коллектор форсажного топлива расположен в зоне вторичного воздуха основной камеры сгорания. Предпочтительно частота вращения компрессора и перепад давлений на...
Тип: Изобретение
Номер охранного документа: 0002578941
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.3880

Способ уплотнения воздушных каналов

Способ уплотнения воздушных каналов заключается в использовании лабиринтного уплотнения. Перед лабиринтным уплотнением расположена полость низкого давления, из которой воздух центробежным компрессором перекачивается в полость высокого давления. Рабочие лопатки компрессора размещены на валу, а...
Тип: Изобретение
Номер охранного документа: 0002582725
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a603

Теплообменник

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности...
Тип: Изобретение
Номер охранного документа: 0002607916
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ac9c

Авиационная стехиометрическая силовая установка и способ ее регулирования

Силовая установка состоит из входного устройства, турбокомпрессора с отбором воздуха за компрессором для охлаждения лопаток турбины, выходного устройства. Турбокомпрессор имеет степень повышения давления в компрессоре не более четырех, одну ступень турбины. Воздух охлаждается в...
Тип: Изобретение
Номер охранного документа: 0002612482
Дата охранного документа: 09.03.2017
Показаны записи 1-10 из 27.
27.06.2014
№216.012.d6c8

Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный...
Тип: Изобретение
Номер охранного документа: 0002520762
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfd5

Парогазотурбинная установка

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002523087
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5ab

Дождевальная установка

Применение в качестве дождевальной установки, создающей облака, газотурбинного двигателя, содержащего турбокомпрессор, форсажную камеру, установленную вертикально относительно поверхности земли, внутри которой за зоной горения расположен водяной коллектор с форсунками, направленными по потоку...
Тип: Изобретение
Номер охранного документа: 0002528724
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa8f

Способ охлаждения газотурбинного двигателя

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим...
Тип: Изобретение
Номер охранного документа: 0002529989
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0eb9

Способ регулирования осевого компрессора в системе газотурбинного двигателя

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной...
Тип: Изобретение
Номер охранного документа: 0002535186
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.66d5

Противообледенительная система газотурбинного двигателя

Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения...
Тип: Изобретение
Номер охранного документа: 0002557878
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c974

Способ форсирования двухконтурного турбореактивного двигателя

Способ форсирования двухконтурного турбореактивного двигателя, заключающийся в подаче в основную камеру сгорания форсажного топлива. Коллектор форсажного топлива расположен в зоне вторичного воздуха основной камеры сгорания. Предпочтительно частота вращения компрессора и перепад давлений на...
Тип: Изобретение
Номер охранного документа: 0002578941
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.3880

Способ уплотнения воздушных каналов

Способ уплотнения воздушных каналов заключается в использовании лабиринтного уплотнения. Перед лабиринтным уплотнением расположена полость низкого давления, из которой воздух центробежным компрессором перекачивается в полость высокого давления. Рабочие лопатки компрессора размещены на валу, а...
Тип: Изобретение
Номер охранного документа: 0002582725
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a603

Теплообменник

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности...
Тип: Изобретение
Номер охранного документа: 0002607916
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ac9c

Авиационная стехиометрическая силовая установка и способ ее регулирования

Силовая установка состоит из входного устройства, турбокомпрессора с отбором воздуха за компрессором для охлаждения лопаток турбины, выходного устройства. Турбокомпрессор имеет степень повышения давления в компрессоре не более четырех, одну ступень турбины. Воздух охлаждается в...
Тип: Изобретение
Номер охранного документа: 0002612482
Дата охранного документа: 09.03.2017
+ добавить свой РИД