×
05.09.2018
218.016.82e0

СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу управления движением летательного аппарата. Для управления движением летательного аппарата производят предполетную подготовку с использованием математической модели летательного аппарата и формируют программную траекторию движения летательного аппарата по опорным точкам определенным образом, в процессе полета восстанавливают траекторию движения летательного аппарата плавным переходом между опорными точками, управление движением летательного аппарата в полете осуществляют при помощи метода пропорционального сближения, при необходимости, с учетом динамической коррекции программной траектории движения летательного аппарата определенным образом. Обеспечивается повышение точности вычисления траектории летательного аппарата средствами бортовой системы управления. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс летательных аппаратов.

Известен способ управления движением воздушных объектов, включающий предполетную подготовку и формирование программной траектории движения летательного аппарата по опорным точкам с дальнейшим осуществлением в процессе полета восстановления траектории движения летательного аппарата плавным переходом между опорными точками (локальное планирование траектории). Сопряжение двух соседних прямолинейных разнонаправленных участков движения осуществляется дугой окружности (МПК G09B 9/00, авторское свидетельство СССР №991479, публ. 23.01.1983).

Недостатками этого способа являются:

- низкая точность локального планирования траектории летательного аппарата из-за игнорирования динамических свойств летательного аппарата и влияния внешней среды;

- высокая вычислительная трудоемкость локального планирования траектории движения средствами бортовой системы управления из-за необходимости выполнения расчетов для каждой опорной точки траектории.

Известен также способ управления движением воздушного объекта, включающий предполетную подготовку и формирование программной траектории движения летательного аппарата по опорным точкам с дальнейшим осуществлением в процессе полета восстановления траектории движения летательного аппарата плавным переходом между опорными точками. Сопряжение двух соседних прямолинейных разнонаправленных участков движения осуществляется переходными кривыми, каждая из которых состоит из двух ветвей кубической параболы, сопряженных между собой дугой окружности или совмещенных непосредственно (МПК G01C 21/00, патент РФ №2419072, публ. 20.05.2011).

Способ имеет недостатки:

- низкая точность локального планирования траектории движения летательного аппарата из-за игнорирования динамических свойств летательного аппарата и влияния внешней среды;

- высокая вычислительная трудоемкость локального планирования траектории движения средствами бортовой системы управления из-за необходимости выполнения расчетов для каждой опорной точки траектории.

Наиболее близким к заявленному способу является способ управления движением летательного аппарата, включающий предполетную подготовку с использованием математической модели летательного аппарата и формирование программной траектории движения летательного аппарата по опорным точкам с дальнейшим осуществлением в процессе полета восстановления траектории движения летательного аппарата плавным переходом между опорными точками. Причем в ходе предполетной подготовки из всего массива опорных точек сформированной программной траектории производится выбор нескольких узловых точек, в которых происходит смена знака любого из параметров летательного аппарата и их производных по времени с отрицательного на положительное значение и наоборот. Параметры выбранных точек до начала движения вводят в память бортового вычислительного устройства летательного аппарата в форме матрицы, при этом после начала движения участки заданной траектории между узловыми точками аппроксимируют с помощью кубического сплайна Эрмита, а управление движением летательного аппарата осуществляют при помощи метода пропорционального сближения (МПК G05D 1/00, F42B 15/00, патент РФ №2571567, публ. 20.12.2015).

Этот способ решает задачу планирования траектории летательного аппарата с учетом динамических свойств летательного аппарата, однако его недостатками являются:

- низкая точность предполетного планирования траектории движения из-за использования приближенных численных методов математического моделирования динамических свойств летательного аппарата;

- низкая точность локального планирования траектории движения из-за игнорирования динамических свойств летательного аппарата и влияния внешней среды;

- неадекватность результатов предполетного и локального планирования траектории движения из-за исключения части опорных точек из рассмотрения по причине их несоответствия требованиям, предъявляемым к узловым точкам;

- высокая вычислительная трудоемкость локального планирования траектории движения средствами бортовой системы управления из-за необходимости выполнения расчетов для каждой узловой точки траектории.

Технической проблемой заявляемого изобретения является недостаточные точность и адекватность локального планирования траектории движения летательного аппарата в соответствии с полетным заданием при снижении вычислительной трудоемкости восстановления траектории средствами бортовой системы управления.

Поставленная проблема решается следующим образом.

В способе планирования траектории движения летательного аппарата, включающем предполетную подготовку с использованием математической модели летательного аппарата и формирование программной траектории движения летательного аппарата по опорным точкам с дальнейшим осуществлением в процессе полета восстановления траектории движения летательного аппарата плавным переходом между опорными точками, дополнительно выполняют в ходе предполетной подготовки до начала движения летательного аппарата формирование в памяти бортовой системы управления летательного аппарата исходных данных о динамических параметрах летательного аппарата и опорных точках траектории в форме матриц BASIS, ROUTE, COORD, LAPLACE, a также формирование программной траектории движения летательного аппарата по матричной формуле у(t)=BASIS×(ROUTE-1×COORD), управление движением летательного аппарата в полете осуществляют при помощи метода пропорционального сближения, при необходимости, с учетом динамической коррекции программной траектории движения летательного аппарата по матричной формуле у(t)=BASIS×(ROUTE-1×COORD)+А×H(t-g)×FORSED, где - блочная матрица-строка базисных функций, элементы которой вычисляются по формуле - маршрутная матрица, элементы которой вычисляются подстановкой времени прохождения опорных точек траектории в матрицу BASIS по формуле - матрица-столбец параметров опорных точек траектории, элементы которой соответствуют параметрам опорных точек траектории ci,1i, ; у(t1)=у1,…у(tn)=уn - опорные точки траектории; у(t) - функция от времени, описывающая траекторию движения летательного аппарата; n - порядок математической модели летательного аппарата, который соответствует количеству опорных точек траектории; t1; …, tn - время прохождения опорных точек траектории; у1, …, уn - параметры опорных точек траектории; λ1, λ2, …, λр и m1, m2, …, mp - различные корни характеристического полинома однородного обыкновенного дифференциального уравнения, соответствующего математической модели летательного аппарата и их кратности; р - количество различных корней характеристического полинома; А - значение амплитуды функции Дирака; g - величина смещения аргумента функции Дирака; H(t-g) - единичная ступенчатая функция Хевисайда от смещенного аргумента (t-g); FORSED - матрица вынужденной составляющей движения летательного аппарата, которая является результатом подстановки значения t=(t-g) в произведение матрицы базисных функций BASIS на матрицу-столбец коэффициентов разложения интегрального преобразования Лапласа по базисным функциям LAPLACE.

Совокупность отличительных признаков заявляемого изобретения обеспечивает выполнение поставленной технической проблемы.

Из изученной научно-технической и патентной информации авторам не известен способ с указанными в формуле изобретения отличительными признаками, это дает основание сделать вывод о соответствии заявляемого способа критериям изобретения.

Заявленное изобретение поясняется чертежом, где показаны опорные точки траектории (Т0…Tn) и программная траектория движения летательного аппарата с учетом динамической коррекции в полете (а - траектория, построенная в результате предполетного планирования, б - траектория, построенная в результате локального планирования).

Способ осуществляется следующим образом.

В ходе предполетной подготовки, до начала движения по траектории, с использованием вычислительных средств бортовой системы управления или наземных средств баллистиконавигационного обеспечения полетов летательного аппарата:

1. По имеющейся приближенной математической модели летательного аппарата, представленной в виде однородного обыкновенного дифференциального уравнения n-го порядка или системы из n однородных дифференциальных уравнений первого порядка в форме Коши или в виде матрицы системы размерностью n×n, где n - порядок математической модели летательного аппарата, совпадающей с количеством опорных точек траектории, строят характеристический полином вида а0+a1s+a2s2+…+sn, где ai - постоянные коэффициенты, , s - независимая переменная (параметр интегрального преобразования Лапласа).

Если порядок математической модели меньше количества опорных точек траектории, с использованием положений теории обыкновенных дифференциальных уравнений предварительно строят эквивалентную математическую модель летательного аппарата необходимой размерности.

2. По коэффициентам характеристического полинома а0+a1s+a2s2+…+sn формируют матрицу Фробениуса , в которой последнюю строку заполняют коэффициентами полинома с обратным знаком в порядке возрастания индекса коэффициентов

3. Определяют матрицу Вронского , в которой первая строка унитарная с единицей в последней позиции, а элементы остальных строк находят по формуле

4. Аналитическими методами вычисляют различные корни λ1, λ2, …, λp характеристического полинома а0+a1s+a2s2+…+sn и их кратности m1, m2, …, mp, где λi - i-й корень полинома; mi - кратность i-го корня полинома; р - количество различных корней полинома.

5. Для частного случая простых корней характеристического полинома (n=р) , где - i-я базисная функция, соответствующая корню λi.

Для случая кратных корней полинома (n>р) матрицу строят в порядке следования корней и возрастания номера корневой модификации базисной функции:

где

Т.е.:

где

6. Находят обобщенную матрицу Вандермонда в форме Быстрова . Элементы матрицы определяют по корням λ1, λ2, …, λр характеристического полинома а0+a1s+a2s2+…+sn с учетом их кратности m1, m2, …, mp. Если все корни полинома простые, то строение блока совпадает с известной матрицей Вандермонда.

В случае наличия кратных корней матрицу строят как композицию корневых блоков в порядке следования корней. Строение первого столбца блока в точности повторяет случай простого корня. Первая строка унитарная с единицей в первой позиции. Остальные элементы блока вычисляют по рекуррентной формуле

7. Вычисляют матрицу-столбец коэффициентов разложения интегрального преобразования Лапласа по базисным функциям

где унитарная матрица-строка .

8. Формируют маршрутную матрицу , элементы которой вычисляют подстановкой планируемого времени прохождения опорных точек траектории в матрицу BASIS по формуле , где ti - планируемое время прохождения i-й опорной точки траектории.

9. Формируют матрицу-столбец значений координат в опорных точках траектории на плоскости в порядке их следования , где ci,1i, .

10. Матрицы BASIS, ROUTE, COORD и LAPLACE записывают в память вычислительных средств бортовой системы управления летательного аппарата, тем самым выполняют формирование в памяти бортовой системы управления летательного аппарата исходных данных о динамических параметрах летательного аппарата и опорных точках траектории.

11. Средствами бортовой системы управления осуществляют формирование программной траектории движения летательного аппарата единовременно для всех опорных точек траектории по матричной формуле

у(t)=BASIS×(ROUTE-1×COORD),

где у(t) - непрерывная функция от времени, проходящая через все опорные точки траектории и описывающая программную траекторию движения летательного аппарата с учетом динамических свойств летательного аппарата.

12. Функцию у(t) записывают в память вычислительных средств бортовой системы управления летательного аппарата, она является результатом предполетного планирования траектории движения летательного аппарата.

После начала движения летательного аппарата по программной траектории движения средствами бортовой системы управления летательного аппарата при помощи метода пропорционального сближения осуществляют отслеживание в каждый рассматриваемый текущий момент времени t положения и компенсацию с приемлемой точностью ухода центра масс летательного аппарата относительно программной траектории движения у(t) при соблюдении условий достижения минимальной методической ошибки управления и исключения «срыва» летательного аппарата с программной траектории.

В случае возникновения необходимости оперативного изменения программной траектории движения летательного аппарата в условиях полета и/или необходимости компенсации влияния на траекторию действий внешних факторов, описываемых функцией Дирака (дельта-функцией) вида А×Dirac(Ord, t-g), с использованием вычислительных средств бортовой системы управления:

1. Корректируют маршрутную матрицу ROUTE в части перевычисления значений элементов, у которых изменились параметры (время прохождения) опорных точек траектории где ti - планируемое или фактическое время прохождения i-й опорной точки траектории.

Если время прохождения планируемой опорной точки траектории не изменилось либо опорная точка траектории на момент возникновения необходимости изменения программной траектории фактически была пройдена, то соответствующий элемент маршрутной матрицы ROUTE не перевычисляют. Общее количество опорных точек траектории движения не должно изменяться.

2. Определяют вынужденную составляющую движения летательного аппарата по матричной формуле FORSED=(BASIS×LAPLACE)t=t-g.

3. Для всех опорных точек маршрута, расположенных правее точки приложения возмущения - функции Дирака, выполняют смещение координат

4. Корректируют матрицу-столбец значений координат в опорных точках траектории COORD в части изменения значений элементов, у которых изменились параметры (координаты) опорных точек траектории с учетом смещения ci,1i, .

5. Матрицы ROUTE, COORD и FORSED записывают в память вычислительных средств бортовой системы управления летательного аппарата.

6. Средствами бортовой системы управления осуществляют динамическую коррекцию программной траектории движения летательного аппарата - локальное планирование траектории движения единовременно для всех опорных точек траектории по матричной формуле

у(t)=BASIS×(ROUTE-1×COORD)+A×H(t-g)×FORSED,

где у(t) - непрерывная функция от времени, проходящая через все опорные точки траектории и описывающая программную траекторию движения летательного аппарата с учетом текущей динамической коррекции; H(t-g) - функция Хевисайда от смещенного аргумента (t-g).

7. Функцию у(t) записывают в память вычислительных средств бортовой системы управления летательного аппарата, что является результатом локального планирования траектории движения летательного аппарата.

Дальнейшее движение летательного аппарата по откорректированной программной траектории движения осуществляют аналогичным способом, как и после предполетного планирования траектории.

Данный способ по сравнению с прототипом позволяет:

- использовать преимущества аналитического (точного) матричного метода и избавиться от влияния методических ошибок приближенных численных методов математического моделирования динамических свойств летательного аппарата, что повышает точность предполетного и локального планирования траектории движения летательного аппарата;

- учитывать влияние на летательный аппарат факторов внешней среды, характер воздействия которых возможно описать функцией Дирака (дельта-функцией);

- учитывать все опорные точки траектории движения летательного аппарата, как в процессе предполетной подготовки, так и при динамической коррекции траектории после начала движения летательного аппарата, что обеспечивает соответствие (адекватность) результатов глобального и локального планирования траектории движения полетному заданию;

- выполнять математическое моделирование динамических свойств и расчет траектории движения летательного аппарата единовременно для всех опорных точек с помощью матричных вычислений без использования операций подстановок, решения алгебраических уравнений, прямого дифференцирования и приведения подобных членов, что снижает вычислительную трудоемкость локального планирования траектории движения средствами бортовой системы управления.

Использование изобретения в авиационной технике позволяет повысить топливную эффективность и живучесть летательного аппарата, сократить время и повысить точность выполнения им полетного задания за счет оптимального планирования траектории движения, как в ходе предполетной подготовки, так и в условиях полета.

Способ управления движением летательного аппарата, включающий предполетную подготовку с использованием математической модели летательного аппарата и формирование программной траектории движения летательного аппарата по опорным точкам с дальнейшим осуществлением в процессе полета восстановления траектории движения летательного аппарата плавным переходом между опорными точками, отличающийся тем, что в ходе предполетной подготовки до начала движения летательного аппарата выполняют формирование в памяти бортовой системы управления летательного аппарата исходных данных о динамических параметрах летательного аппарата и опорных точках траектории в форме матриц BASIS, ROUTE, COORD, LAPLACE, а также формирование программной траектории движения летательного аппарата по матричной формуле y(t)=BASIS×(ROUTE×COORD), управление движением летательного аппарата в полете осуществляют при помощи метода пропорционального сближения, при необходимости, с учетом динамической коррекции программной траектории движения летательного аппарата по матричной формуле y(t)=BASIS×(ROUTE×COORD)+A×H(t-g)×FORSED, где - блочная матрица-строка базисных функций, элементы которой вычисляются по формуле , , ; ROUTE∈R=(r) - маршрутная матрица, элементы которой вычисляют подстановкой времени прохождения опорных точек траектории в матрицу BASIS по формуле , , ; COORD∈R=(c) - матрица-столбец параметров опорных точек траектории, элементы которой соответствуют параметрам опорных точек траектории с=y, ; y(t)=y, …, y(t)=y - опорные точки траектории; y(t) - функция от времени, описывающая траекторию движения летательного аппарата; n - порядок математической модели летательного аппарата, который соответствует количеству опорных точек траектории; t, …, t - время прохождения опорных точек траектории; у, …, у - параметры опорных точек траектории; λ, λ, …, λ и m, m, …, m - различные корни характеристического полинома однородного обыкновенного дифференциального уравнения, соответствующего математической модели летательного аппарата и их кратности; р - количество различных корней характеристического полинома; А - значение амплитуды функции Дирака; g - величина смещения аргумента функции Дирака; H(t-g) - единичная ступенчатая функция Хевисайда от смещенного аргумента (t-g); FORSED - матрица вынужденной составляющей движения летательного аппарата, которая является результатом подстановки значения t=(t-g) в произведение матрицы базисных функций BASIS на матрицу-столбец коэффициентов разложения интегрального преобразования Лапласа по базисным функциям LAPLACE.
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 164.
10.04.2016
№216.015.2f69

Жидкостекольная композиция

Изобретение относится к области производства строительных материалов, а именно к составам полимерсиликатных смесей, предназначенных для изготовления конструктивных элементов, работающих в условиях агрессивных сред. Техническим результатом является повышение водостойкости и биостойкости...
Тип: Изобретение
Номер охранного документа: 0002580539
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fc2

Устройство для образования винтового профиля на стенках скважин под буронабивные сваи (дополнительное)

Изобретение относится к строительству, а именно к устройствам, повышающим несущую способность буронабивных свай, и найдет применение при строительстве фундаментов зданий и сооружений. Устройство для образования винтового профиля на стенках скважин под буронабивные сваи, содержащее рабочий...
Тип: Изобретение
Номер охранного документа: 0002580120
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.309d

Способ обработки поверхности фторсодержащей резины

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления...
Тип: Изобретение
Номер охранного документа: 0002580722
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34f7

Свч-печь

Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода. При...
Тип: Изобретение
Номер охранного документа: 0002581689
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.350e

Способ стабилизации параметров шарикоподшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число...
Тип: Изобретение
Номер охранного документа: 0002581414
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.354f

Способ правки длинномерных деталей

Изобретение относится к холодной обработке металлов давлением, а точнее к способам и устройствам для правки и стабилизации размеров длинномерных цилиндрических деталей. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают роликом, который...
Тип: Изобретение
Номер охранного документа: 0002581692
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.357d

Способ формирования серебросодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Описан способ получения серебросодержащего биопокрытия титанового имплантата, заключающийся в предварительной...
Тип: Изобретение
Номер охранного документа: 0002581825
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35b1

Сорбционно-флуоресцентный способ определения содержания полициклических ароматических углеводородов в водных растворах и сорбент для реализации способа

Изобретение относится к области химии окружающей среды, к аналитической химии и может быть использовано для определения содержания полициклических ароматических углеводородов (ПАУ) в водной среде. Способ определения содержания полициклических ароматических углеводородов в водных растворах...
Тип: Изобретение
Номер охранного документа: 0002581411
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3611

Способ стабилизации параметров подшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении колец подшипника под внешней осевой нагрузкой, внешнюю нагрузку устанавливают равной Р=k С, а частоту вращения подшипника...
Тип: Изобретение
Номер охранного документа: 0002581408
Дата охранного документа: 20.04.2016
Показаны записи 1-10 из 15.
10.09.2015
№216.013.79d1

Командно-стрельбовая информационно-управляющая система

Изобретение относится к боевым информационно-управляющим системам и может быть использовано для управления подготовкой и пуском ракет (противоракет, торпед, управляемых снарядов и т.п.), в которые ввод данных полетного задания осуществляется от обеспечивающих систем. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002562774
Дата охранного документа: 10.09.2015
26.08.2017
№217.015.d649

Командно-стрельбовая информационно-управляющая система (варианты)

Изобретение относится к информационно-управляющим системам для управления с вводом данных полетного задания. Технический результат заключается в повышении надежности и отказоустойчивости системы. Система содержит автоматизированное рабочее место оператора (1), оснащенное средствами ограничения...
Тип: Изобретение
Номер охранного документа: 0002622848
Дата охранного документа: 20.06.2017
26.08.2017
№217.015.ee54

Стенд для испытаний элементов беспилотного вертолета с соосными винтами

Изобретение относится к испытательной технике, в частности к стендам, и может быть использовано в авиационной испытательной технике для испытаний элементов беспилотного вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную,...
Тип: Изобретение
Номер охранного документа: 0002628873
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.07e9

Способ получения карты мощности антропогенных карбонатных отложений археологического памятника типа "раковинная куча"

Изобретение относится к геофизике и археологии и может быть использовано для выявления внутренней структуры археологических объектов, представляющих собой слои ограниченного простирания и мощности, сложенные раковинами моллюсков. Для выделения границ слоя раковин в культурных отложениях на...
Тип: Изобретение
Номер охранного документа: 0002631527
Дата охранного документа: 25.09.2017
10.05.2018
№218.016.3ee5

Способ управления движением летательного аппарата

Изобретение относится к способу управления движением летательного аппарата (ЛА), при котором производят предполетную подготовку ЛА с использованием математической модели ЛА, в ходе которой формируют исходные данные о динамических параметрах ЛА и опорных точках траектории определенным образом,...
Тип: Изобретение
Номер охранного документа: 0002648556
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.421b

Способ планирования траектории движения летательного аппарата

Изобретение относится к способу управления движением летательного аппарата (ЛА). Для управления движением ЛА проводят предполетную подготовку с использованием математической модели ЛА, формируют в памяти бортовой системы управления исходные данные о динамических параметрах ЛА и опорных точек в...
Тип: Изобретение
Номер охранного документа: 0002649287
Дата охранного документа: 30.03.2018
29.05.2018
№218.016.53eb

Способ автономной ориентации подвижных объектов

Изобретение относится к способу автономной ориентации подвижного объекта. Для автономной ориентации подвижного объекта измеряют проекции векторов напряженности результирующего магнитного поля трехосным блоком акселерометров, кажущееся ускорение объекта трехосным блоком акселерометров,...
Тип: Изобретение
Номер охранного документа: 0002653967
Дата охранного документа: 15.05.2018
28.08.2018
№218.016.7fcb

Стенд для испытаний элементов вертолета с соосными винтами

Изобретение относится к авиационной испытательной технике, а именно к стендам для испытаний элементов вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную, каркас фюзеляжа, амортизаторы, мотораму, двигатель внутреннего...
Тип: Изобретение
Номер охранного документа: 0002664982
Дата охранного документа: 24.08.2018
25.01.2019
№219.016.b3db

Комплекс средств обеспечения эксплуатации летательных аппаратов

Комплекс средств обеспечения эксплуатации летательных аппаратов содержит вводно-распределительный модуль, энергетический модуль, модуль генератора электрической энергии, серверный модуль, модуль хранения данных, модуль диспетчерского управления, каждый из которых содержит системы...
Тип: Изобретение
Номер охранного документа: 0002678182
Дата охранного документа: 23.01.2019
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
+ добавить свой РИД