×
29.05.2018
218.016.53eb

СПОСОБ АВТОНОМНОЙ ОРИЕНТАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу автономной ориентации подвижного объекта. Для автономной ориентации подвижного объекта измеряют проекции векторов напряженности результирующего магнитного поля трехосным блоком акселерометров, кажущееся ускорение объекта трехосным блоком акселерометров, абсолютную угловую скорость вращения объекта трехосным блоком гироскопов, выполняют предварительную метрологическую калибровку магнитометров, акселерометров и гироскопов, идентификацию и учет параметров внутренних и внешних помех объекта, алгоритмическую обработку сигналов магнитометров, акселерометров и гироскопов, коррекцию, учет относительных угловых скоростей вращения и редукцию показаний магнитометров, акселерометров и гироскопов, формируют информацию о совокупности базисов векторов геофизических полей и дополнительных векторов в неподвижном и связанном трехгранниках, вычисляют оценки направляющих косинусов и углов ориентации объекта в условиях функциональной избыточности информации, оценки угловых скоростей вращения объекта. Обеспечивается повышение точности автономной ориентации подвижных объектов. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах пространственной ориентации и навигации подвижных объектов.

Известен способ ориентации подвижного объекта, основанный на интегрированном использовании информации, получаемой от бортовой бесплатформенной инерциальной системы ориентации и навигации, а также дифференциальной спутниковой навигационной системы (Пешехонов В.Г. Интегрированные инерциально-спутниковые системы навигации // Сборник докладов и статей / под общей ред. акад. РАН В.Г. Пешехонова. Составитель д.т.н. О.А. Степанов. - СПб.: ГНЦ РФ - ЦНИИ Электроприбор, 2001. 235 с.).

Недостатком этого способа является низкая точность ориентации объекта в автономном режиме - при отсутствии дифференциальных поправок от спутниковой навигационной системы.

Известен также аналитический способ автономной ориентации подвижного объекта, основанный на формировании и обработке интегрированной многомерной информации, получаемой от пар и троек трехосных блоков гироскопов, акселерометров и магнитометров (Шведов А.П. Комплексирование магнитометрических и инерциальных систем ориентации / А.П. Шведов, Ю.В. Иванов, Д.М. Малютин, Р.В. Алалуев, М.Г. Погорелов // Справочник. Инженерный журнал. Приложение. №6. 2010. С. 15-19).

Способ имеет недостатки:

- низкая точность автономной ориентации объекта в районах географических / геомагнитных полюсов и околополярных районах (с географической широтой более 60°) из-за близости к условию вырождения алгоритмов обработки информации по причине квазиколлинеарности базовых векторов геофизических полей - поля тяжести и поля вращения Земли / поля тяжести и магнитного поля Земли;

- повышенная чувствительность алгоритмов обработки информации к погрешностям первичных измерений;

- низкая точность ориентации объекта из-за чувствительности алгоритмов обработки информации к дестабилизирующим факторам - внешним и внутренним помехам, технологическим и эксплуатационным помехам.

Наиболее близким к заявленному способу является аналитический способ автономной ориентации подвижного объекта, основанный на формировании расширенной комплексной магнито-тахо-акселерометричекой информации, получаемой с помощью трехблочного гибридного измерительного модуля, и последующей обработке полученной информации по алгоритмам аналитического горизонт-компасирования (МПК E21B 47/022, патент РФ №2503810, публ. 10.01.2014).

Способ ориентации включает измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение углов пространственной ориентации объекта. При этом оценивается погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы и корректируется величина дрейфа гироскопических датчиков с учетом информации от феррозондов. Причем при отсутствии магнитных аномалий вычисляются углы ориентации по сигналам феррозондов и акселерометров, а при работе в средах с аномальными магнитными свойствами вычисляются параметры ориентации по сигналам гироскопов и акселерометров. Т.е. обработка многомерной магнито-тахо-акселерометричекой информации выполняется по схеме реконфигурации. При отсутствии магнитных аномалий и внешних помех реализуется автономная ориентация с помощью безгироскопного интегрированного магнито-акселеметрического измерительного модуля. При наличии магнитных аномалий и при появлении внешних магнитных помех реализуется автономная ориентация с помощью гибридного тахо-акселерометрического модуля.

Этот способ решает задачу автономной ориентации подвижного объекта, однако его недостатками являются:

- низкая точность ориентации объекта в районах географических / геомагнитных полюсов и околополярных районах (с географической широтой более 60°) из-за вырождения алгоритмов обработки информации по причине квазиколлинеарности базовых векторов геофизических полей - поля тяжести и поля вращения Земли / поля тяжести и магнитного поля Земли;

- низкая точность ориентации объекта из-за чувствительности алгоритмов обработки информации к дестабилизирующим факторам - внешним и внутренним помехам, технологическим и эксплуатационным помехам.

Технической проблемой заявляемого изобретения является недостаточная точность автономной ориентации подвижных объектов.

Поставленная проблема решается следующим образом.

В способе автономной ориентации подвижного объекта, основанном на измерениях проекций векторов напряженности результирующего магнитного поля трехосным блоком магнитометров, кажущегося ускорения объекта трехосным блоком акселерометров и абсолютной угловой скорости вращения объекта трехосным блоком гироскопов, дополнительно выполняют: предварительную метрологическую калибровку блоков магнитометров, акселерометров и гироскопов; идентификацию и учет параметров внутренних и внешних помех объекта; алгоритмическую обработку сигналов блоков магнитометров, акселерометров и гироскопов; коррекцию, учет относительных угловых скоростей вращения и редукцию показаний блоков магнитометров, акселерометров и гироскопов; формирование информации о совокупности базисов векторов геофизических полей и дополнительных векторов в неподвижном и связанном трехгранниках; вычисление оценок направляющих косинусов и углов ориентации объекта по алгоритмам аналитической пространственной ориентации объекта в условиях функциональной избыточности информации; вычисление оценок относительных угловых скоростей вращения объекта.

Совокупность отличительных признаков заявляемого изобретения обеспечивает выполнение поставленной технической задачи.

Из изученной научно-технической и патентной информации авторам не известен способ с указанными в формуле изобретения отличительными признаками, это дает основание сделать вывод о соответствии заявляемого способа критериям изобретения.

Заявленное изобретение поясняется фиг., отражающей последовательность подготовки, измерения и обработки многомерной информации. Позициями на чертежах обозначены: 1 - предварительная метрологическая калибровка блоков магнитометров, акселерометров и гироскопов; 2 - идентификация и учет параметров внутренних и внешних помех объекта; 3 - измерения проекций векторов напряженности результирующего магнитного поля трехосным блоком магнитометров, кажущегося ускорения объекта трехосным блоком акселерометров и абсолютной угловой скорости вращения объекта трехосным блоком гироскопов; 4 - алгоритмическая обработка сигналов блоков магнитометров, акселерометров и гироскопов; 5 - коррекция, учет относительных угловых скоростей вращения и редукция показаний блоков магнитометров, акселерометров и гироскопов; 6 - формирование информации о совокупности базисов векторов геофизических полей и дополнительных векторов в неподвижном и связанном трехгранниках; 7 - вычисление оценок направляющих косинусов и углов ориентации объекта по алгоритмам аналитической пространственной ориентации объекта в условиях функциональной избыточности информации; 8 - вычисление оценок относительных угловых скоростей вращения объекта.

При реализации способа автономной ориентации подвижных объектов в системах пространственной ориентации и навигации подвижных объектов выполняют (реализуют) следующие операции:

1. С целью проведения предварительной метрологической калибровки блоков магнитометров, акселерометров и гироскопов (позиция 1 фиг.) в режиме натурного эксперимента формируют:

- матрицы-столбцы оценок векторов масштабных коэффициентов измерительных каналов трехосных блоков магнитометров , акселерометров и гироскопов :

; ; ,

где , , , , , , , , - значения оценок векторов масштабных коэффициентов измерительных каналов трехосных блоков, соответственно, магнитометров, акселерометров и гироскопов в связанных координатных осях X, Y, Z;

- матрицы-столбцы оценок векторов систематических составляющих нулевых сигналов измерительных каналов трехосных блоков магнитометров , акселерометров и гироскопов в связанных координатных осях X, Y, Z:

;;,

где , , , , , , , , - значения оценок векторов систематических составляющих нулевых сигналов измерительных каналов трехосных блоков, соответственно, магнитометров, акселерометров и гироскопов в связанных координатных осях X, Y, Z.

2. Для идентификации и учета параметров внутренних и внешних помех объекта (позиция 2 фиг.) формируют:

- матрицы геометрических погрешностей сборки трехосных блоков магнитометров Вм, акселерометров Ва и гироскопов Вг:

;

;

,

где , , , , , , , , , , , , , , , , , - значения величин геометрических погрешностей сборки трехосных блоков, соответственно, магнитометров, акселерометров и гироскопов в связанных координатных осях X, Y, Z;

- матрицу геометрических погрешностей монтажа модуля с трехосными блоками магнитометров, акселерометров и гироскопов на объекте М

,

где α, β, σ - значения величин геометрических погрешностей монтажа модуля, содержащего трехосные блоки магнитометров, акселерометров и гироскопов, на объекте;

- матрицу коэффициентов Пуассона S и вектор напряженности магнитного поля объекта постоянной намагниченности:

,

где a, b, c, d, е, , g, h, k - коэффициенты Пуассона;

,

где Р, Q, R - значения составляющих вектора напряженности магнитного поля объекта в связанных координатных осях X, Y, Z;

- матрицу-столбец оценок угловой скорости дрейфа блока гироскопов в проекции на оси связанного трехгранника m=XYZ:

,

где , , - значения оценок составляющих вектора угловой скорости дрейфа блока гироскопов в проекции на оси связанного трехгранника m=XYZ.

3. Выполняют измерения проекций векторов напряженности результирующего магнитного поля трехосным блоком магнитометров, кажущегося ускорения объекта трехосным блоком акселерометров и абсолютной угловой скорости вращения объекта трехосным блоком гироскопов (позиция 3 фиг.). Результаты измерения представляют в виде уравнений:

;

;

,

где , , - векторы фактических значений выходных сигналов трехосных блоков, соответственно, магнитометров, акселерометров и гироскопов в связанных координатных осях X, Y, Z; γx, γy, γz, kx, ky, kz, nx, ny, nz - фактические значения величин масштабных коэффициентов измерительных каналов трехосных блоков, соответственно, магнитометров, акселерометров и гироскопов в связанных координатных осях X, Y, Z; , , - векторы фактических значений систематических составляющих нулевых сигналов измерительных каналов трехосных блоков, соответственно, магнитометров, акселерометров и гироскопов в связанных координатных осях X, Y, Z.

4. С учетом результатов полученных при выполнении позиций 1 и 3 фиг. осуществляют алгоритмическую обработку сигналов блоков магнитометров, акселерометров и гироскопов (позиция 4 фиг.) по формулам:

;

;

,

где , , - оценки векторов, соответственно, напряженности результирующего магнитного поля, кажущегося ускорения объекта и абсолютной угловой скорости вращения объекта, отнесенных к связанному трехграннику m=XYZ.

5. С учетом результатов предварительно проведенной идентификации параметров внутренних и внешних помех объекта - позиция 2 фиг. (Вм, Ва Вг, М, S, , ), с использованием данных бортовой навигационной системы о векторе абсолютного ускорения движения объекта в связанных координатных осях X, Y, и результатов вычислений оценок составляющих вектора относительной угловой скорости вращения объекта на предыдущем шаге вычислений - позиция 8 фиг. (, , ) выполняют коррекцию показаний блоков магнитометров, акселерометров и гироскопов - позиция 4 фиг., а также их приведение (редукцию) к эквивалентному ортонормированному немагнитному основанию (позиция 5 фиг.) по формулам:

;

;

,

где Е - единичная матрица; , , - приведенные значения составляющих вектора результирующего магнитного поля в связанных координатных осях X, Y, Z; , , - приведенные значения составляющих вектора ускорения свободного падения тела в связанных координатных осях X, Y, Z; , , - приведенные значения вектора угловой скорости вращения Земли в связанных координатных осях X, Y, Z; - оценка матрицы ориентации объекта, полученная на предыдущем шаге вычислений; , , - оценки составляющих вектора относительной угловой скорости вращения объекта, полученные на предыдущем шаге вычислений; - вектор магнитного поля Земли, приведенный к связанным координатным осям X, Y, Z; - вектор ускорения свободного падения тела, приведенный к связанным координатным осям X, Y, Z; - вектор угловой скорости вращения Земли, приведенный к связанным координатным осям X, Y, Z.

6. По известным координатам местоположения объекта с использованием формул стандартных моделей геофизических полей (JGRF, WMM-2015, ЕММ-2015, HDGM-2015) и фигуры Земли в виде эллипсоида вращения (WGS-84, ПЗ-90) формируют избыточную информацию о совокупностях базисов векторов геофизических полей и дополнительных векторов , , , , , в связанном m=XYZ и неподвижном (географическом) s=NHE трехгранниках (позиция 6 фиг.):

; ; ;

; ; ,

; ; ;

; ; ,

где , , - оценки компонентов вектора напряженности магнитного поля Земли в географическом трехграннике s; , - оценки компонентов вектора напряженности поля тяжести Земли в географическом трехграннике s; , - оценки проекций вектора угловой скорости суточного вращения Земли на оси географического трехгранника s; , , - оценки векторов напряженности магнитного поля, поля тяжести и угловой скорости суточного вращения Земли, приведенные к географическому трехграннику s, соответственно; , , , , , - дополнительные векторы, равные произведениям векторов геофизических полей, отнесенные к осям связанного m=XYZ и географического s=NHE трехгранников.

7. По параметрам сформированных совокупностей базисов векторов геофизических полей в связанном и неподвижном (географическом) трехгранниках (позиция 6 фиг.), которые определяют функциональную избыточность информации, по алгоритмам аналитической пространственной ориентации объекта выполняют вычисление оценок направляющих косинусов и углов ориентации подвижного объекта путем решения систем трех уравнений (позиция 7 фиг.):

; ; ; ;

; ; ; ;

; ; ; ;

; ; ; ;

; ; ; .

Результатом решения систем уравнений являются значения оценок направляющих косинусов матрицы ориентации и оценок углов ориентации объекта - угла курса, - угла тангажа, - угла крена.

8. Вычисляют оценки относительных угловых скоростей вращения объекта (позиция 8 фиг.) на i-м шаге вычислений по алгоритмам численного дифференцирования

,

где , , , , , - значения оценок углов курса, тангажа и крена подвижного объекта на i-ом и (i-1)-ом шагах вычислений; Δti - интервал времени на i-ом шаге вычислений.

Данный способ по сравнению с прототипом позволяет:

- повысить точность решения задачи автономной ориентации подвижных объектов в районах географических / геомагнитных полюсов и околополярных районах, за счет вычисления дополнительных векторов , , , , , и их последующего использования в алгоритмах алгоритмической пространственной ориентации;

- повысить точность ориентации объекта за счет учета в алгоритмах обработки информации оценок дестабилизирующих факторов - внешних и внутренних помех, технологических и эксплуатационных помех, идентифицируемых в процессе предварительной метрологической калибровки блоков магнитометров, акселерометров и гироскопов.

Использование изобретения позволяет решать задачи автономной ориентации и навигации подвижных объектов в условиях отсутствия возможности применения спутниковых навигационных систем, что повышает безопасность и эффективность эксплуатации образцов авиационной, морской и наземной техники, в том числе в районах географических / геомагнитных полюсов и околополярных районах.

Способ автономной ориентации подвижного объекта, включающий измерения проекций векторов напряженности результирующего магнитного поля трехосным блоком магнитометров, кажущегося ускорения объекта трехосным блоком акселерометров и абсолютной угловой скорости вращения объекта трехосным блоком гироскопов, отличающийся тем, что выполняют: предварительную метрологическую калибровку блоков магнитометров, акселерометров и гироскопов; идентификацию и учет параметров внутренних и внешних помех объекта; алгоритмическую обработку сигналов блоков магнитометров, акселерометров и гироскопов; коррекцию, учет относительных угловых скоростей вращения и редукцию показаний блоков магнитометров, акселерометров и гироскопов; формирование информации о совокупности базисов векторов геофизических полей и дополнительных векторов в неподвижном и связанном трехгранниках; вычисление оценок направляющих косинусов и углов ориентации объекта по алгоритмам аналитической пространственной ориентации объекта в условиях функциональной избыточности информации; вычисление оценок относительных угловых скоростей вращения объекта.
СПОСОБ АВТОНОМНОЙ ОРИЕНТАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ АВТОНОМНОЙ ОРИЕНТАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 164.
10.04.2016
№216.015.2f69

Жидкостекольная композиция

Изобретение относится к области производства строительных материалов, а именно к составам полимерсиликатных смесей, предназначенных для изготовления конструктивных элементов, работающих в условиях агрессивных сред. Техническим результатом является повышение водостойкости и биостойкости...
Тип: Изобретение
Номер охранного документа: 0002580539
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fc2

Устройство для образования винтового профиля на стенках скважин под буронабивные сваи (дополнительное)

Изобретение относится к строительству, а именно к устройствам, повышающим несущую способность буронабивных свай, и найдет применение при строительстве фундаментов зданий и сооружений. Устройство для образования винтового профиля на стенках скважин под буронабивные сваи, содержащее рабочий...
Тип: Изобретение
Номер охранного документа: 0002580120
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.309d

Способ обработки поверхности фторсодержащей резины

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления...
Тип: Изобретение
Номер охранного документа: 0002580722
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34f7

Свч-печь

Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода. При...
Тип: Изобретение
Номер охранного документа: 0002581689
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.350e

Способ стабилизации параметров шарикоподшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число...
Тип: Изобретение
Номер охранного документа: 0002581414
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.354f

Способ правки длинномерных деталей

Изобретение относится к холодной обработке металлов давлением, а точнее к способам и устройствам для правки и стабилизации размеров длинномерных цилиндрических деталей. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают роликом, который...
Тип: Изобретение
Номер охранного документа: 0002581692
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.357d

Способ формирования серебросодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Описан способ получения серебросодержащего биопокрытия титанового имплантата, заключающийся в предварительной...
Тип: Изобретение
Номер охранного документа: 0002581825
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35b1

Сорбционно-флуоресцентный способ определения содержания полициклических ароматических углеводородов в водных растворах и сорбент для реализации способа

Изобретение относится к области химии окружающей среды, к аналитической химии и может быть использовано для определения содержания полициклических ароматических углеводородов (ПАУ) в водной среде. Способ определения содержания полициклических ароматических углеводородов в водных растворах...
Тип: Изобретение
Номер охранного документа: 0002581411
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3611

Способ стабилизации параметров подшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении колец подшипника под внешней осевой нагрузкой, внешнюю нагрузку устанавливают равной Р=k С, а частоту вращения подшипника...
Тип: Изобретение
Номер охранного документа: 0002581408
Дата охранного документа: 20.04.2016
Показаны записи 1-10 из 18.
20.07.2014
№216.012.e26f

Способ персональной автономной навигации

Изобретение относится к области приборостроения, в частности к способам персональной навигации (пешеходной, автомобильной и пр.), и может быть использовано при решении задач локальной навигации (мининавигации). Технический результат - получение наиболее полной и достоверной информации о...
Тип: Изобретение
Номер охранного документа: 0002523753
Дата охранного документа: 20.07.2014
10.04.2015
№216.013.3eb2

Способ дистанционного бесконтактного зондирования, каротажа пород и позиционирования снаряда в буровой скважине

Изобретение относится к области геофизики, геологической разведки и может быть использовано при пробном, поисковом и эксплуатационном бурении скважин. Предложен способ зондирования, каротажа пород и позиционирования снаряда в буровой скважине, включающий генерацию электромагнитного и магнитного...
Тип: Изобретение
Номер охранного документа: 0002547538
Дата охранного документа: 10.04.2015
10.09.2015
№216.013.79d1

Командно-стрельбовая информационно-управляющая система

Изобретение относится к боевым информационно-управляющим системам и может быть использовано для управления подготовкой и пуском ракет (противоракет, торпед, управляемых снарядов и т.п.), в которые ввод данных полетного задания осуществляется от обеспечивающих систем. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002562774
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8ee5

Дистанционный геолого-разведочный измерительно-вычислительный комплекс "тантал"

Изобретение относится к области геологоразведки и может быть использовано при поисковом или эксплуатационном бурении скважин. Устройство в виде геолого-разведочного измерительно-вычислительного комплекса, предназначенного для каротажа пород и позиционирования снаряда в буровой скважине и...
Тип: Изобретение
Номер охранного документа: 0002568190
Дата охранного документа: 10.11.2015
26.08.2017
№217.015.d649

Командно-стрельбовая информационно-управляющая система (варианты)

Изобретение относится к информационно-управляющим системам для управления с вводом данных полетного задания. Технический результат заключается в повышении надежности и отказоустойчивости системы. Система содержит автоматизированное рабочее место оператора (1), оснащенное средствами ограничения...
Тип: Изобретение
Номер охранного документа: 0002622848
Дата охранного документа: 20.06.2017
26.08.2017
№217.015.ee54

Стенд для испытаний элементов беспилотного вертолета с соосными винтами

Изобретение относится к испытательной технике, в частности к стендам, и может быть использовано в авиационной испытательной технике для испытаний элементов беспилотного вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную,...
Тип: Изобретение
Номер охранного документа: 0002628873
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.07e9

Способ получения карты мощности антропогенных карбонатных отложений археологического памятника типа "раковинная куча"

Изобретение относится к геофизике и археологии и может быть использовано для выявления внутренней структуры археологических объектов, представляющих собой слои ограниченного простирания и мощности, сложенные раковинами моллюсков. Для выделения границ слоя раковин в культурных отложениях на...
Тип: Изобретение
Номер охранного документа: 0002631527
Дата охранного документа: 25.09.2017
10.05.2018
№218.016.3ee5

Способ управления движением летательного аппарата

Изобретение относится к способу управления движением летательного аппарата (ЛА), при котором производят предполетную подготовку ЛА с использованием математической модели ЛА, в ходе которой формируют исходные данные о динамических параметрах ЛА и опорных точках траектории определенным образом,...
Тип: Изобретение
Номер охранного документа: 0002648556
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.421b

Способ планирования траектории движения летательного аппарата

Изобретение относится к способу управления движением летательного аппарата (ЛА). Для управления движением ЛА проводят предполетную подготовку с использованием математической модели ЛА, формируют в памяти бортовой системы управления исходные данные о динамических параметрах ЛА и опорных точек в...
Тип: Изобретение
Номер охранного документа: 0002649287
Дата охранного документа: 30.03.2018
28.08.2018
№218.016.7fcb

Стенд для испытаний элементов вертолета с соосными винтами

Изобретение относится к авиационной испытательной технике, а именно к стендам для испытаний элементов вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную, каркас фюзеляжа, амортизаторы, мотораму, двигатель внутреннего...
Тип: Изобретение
Номер охранного документа: 0002664982
Дата охранного документа: 24.08.2018
+ добавить свой РИД