×
28.08.2018
218.016.7fec

Результат интеллектуальной деятельности: Способ изготовления фильтров для ИК-диапазона

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и кристаллизации. Слиток ZnSeS выращивают с варьируемым соотношением исходной смеси бинарных компонент ZnSe и ZnS от 1:0.75 до 0.75:1 при температурах 1230-1270°C с перепадом температуры между зонами испарения и кристаллизации 50-75°C. Технический результат заключается в расширении крайних значений граничной длины волны фильтров за счет расширения диапазона изменения концентрации х по длине слитка ZnSeS. 3 табл.

Изобретение относится к технологии оптического приборостроения и может быть использовано при изготовлении отрезающих фильтров ИК-диапазона (коротковолновая часть спектра) с различной граничной длиной волны, применяемых в спектральных приборах для устранения рассеянного излучения и побочных максимумов диспергирующих элементов, селекции отдельных участков спектра и линий источников оптического излучения.

Известен способ изготовления отрезающих фильтров с изменяющейся в диапазоне 0,38-0,44 мкм граничной длиной волны путем выращивания кристаллов твердого раствора ТlСl-Тl Вr различного состава и последующего разрезания полученных кристаллов на пластины перпендикулярно оси роста (И.С. Лисицкий, Н.В. Овсянникова, Т.И. Дарвойд, А.П. Белоусов. Коротковолновое спектральное пропускание кристаллов твердых растворов галогенидов таллия // Оптико-механическая промышленность.- 1981. - №4. - С. 16-17).

Недостатками этого способа являются ограниченный диапазон изменения граничной длиной волны получаемых фильтров, а также необходимость выращивания для каждой граничной длиной волны кристалла соответствующего состава, что усложняет и удорожает технологический процесс. Также недостатком способа является высокая летучесть и токсичность исходных компонентов (соединения таллия), что повышает требования к технике безопасности при изготовлении фильтров и снижает простоту и технологичность способа.

Наиболее близким к предложенному является способ изготовления отрезающих фильтров (Патент РБ №11644 от 28.09.2009. Левченко В.И., Постнова Л.И., Барсукова Е.Л.), заключающийся в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора ZnSe1-xSx.

Технический результат - расширение диапазона изменения концентрации х (от х=0.3 до х=0.9) по длине слитка в твердом растворе ZnSe1-xSx и как следствие расширение крайних значений граничной длины волны.

Технический результат достигается тем, что слиток ZnSe1-xSx выращивают с варьируемым соотношением исходной смеси бинарных компонент ZnSe и ZnS от 1:0.75 до 0.75:1 при температурах 1230-1270°С с перепадом температуры между зонами испарения и кристаллизации 50-75°С.

Сущность изобретения состоит в следующем. Слиток твердого раствора ZnSe1-xSx с градиентом состава по длине (от х=0.3 до х=0.9) выращивают из смеси бинарных компонент ZnSe и ZnS, взятых в различных стехиометрических соотношениях (от 1:0.75 до 0.75:1), при температуре 1230-1270°С из паровой фазы в вакуумированной кварцевой ампуле и перепаде температуры между зонами испарения и кристаллизации 50-75°С и последующим медленным охлаждением до комнатной температуры. В процессе кристаллизации в холодном конце ампулы зарождается и растет кристалл твердого раствора (ZnSe)1-x(ZnS)x. Состав твердого раствора вследствие различной летучести бинарных компонент и различной стехиометрии закладки (с ростом концентрации ZnS) исходных компонент по мере роста изменяется в сторону увеличения концентрации менее летучей компоненты - ZnS. Это обеспечивает градиент состава от х=0.3 до х=0.9 в направлении роста. После завершения стадии выращивания печь с ампулой охлаждают до комнатной температуры и кристалл извлекают на воздух. Контролируемое медленное охлаждение синтезированного кристалла (со скоростями охлаждения не выше 50°С/час) позволяет получать высококачественные слитки с равномерным распределением состава и устойчиво воспроизводимыми свойствами. Затем слиток твердого раствора ZnSe1-xSx разрезают перпендикулярно направлению роста кристалла на пластины, которые подвергают шлифовке и оптической полировке. В результате получается набор пластин-фильтров с различным соотношением х и как следствие различной граничной длиной волны. Диапазон изменения граничной длины можно регулировать изменением соотношения исходных бинарных компонент. При соотношении бинарных компонент ZnSe и ZnS 1:0.75 максимальная концентрация х в твердом растворе ZnSe1-xSx составляет до 0.3-0.5. Как следствие граничная длина волны смещается в длинноволновую область спектра (до 0,395-0,480 мкм). При соотношении бинарных компонент ZnSe и ZnS 0.75:1 максимальная концентрация х в твердом растворе ZnSe1-xSx составляет до 0.9. Как следствие, граничная длина волны смещается в коротковолновую область спектра (до 0,340-0,365 мкм).

Пример 1

В качестве исходного материала для выращивания кристалла использовалась смесь бинарных компонент ZnSe и ZnS с соотношением 1:0.75. Исходные бинарные компоненты измельчали до размера зерна менее 1 мм, тщательно перемешивали и загружали в кварцевую ампулу с внутренним диаметром 10 мм, которую затем откачивали до остаточного давления 5×10-6 Тор и запаивали. Процесс выращивания кристалла проводили в горизонтальной печи при температуре кристаллизации 1230°С и перепаде температуры между зонами испарения и роста 50°С в течение 50 часов. После этого печь с ампулой охлаждали до комнатной температуры со скоростью 50°С/час и извлекали кристалл на воздух. Затем его разрезали алмазным диском перпендикулярно направлению роста на пластины толщиной 3,0 мм, которые подвергали последовательно двухсторонней шлифовке и оптической полировке абразивными порошками М28, М10, М5 и M1. Химический состав и соотношение компонент (х) нарезанных пластин определяли методом EDAX. Параметры фильтров определили по спектрам поглощения в диапазоне длин волн 0,3-3 мкм. Основные параметры (химический состав, крайние значения диапазона граничной длины волны и ширина диапазона граничной длины волны) и сопоставление с параметрами прототипа приведены в Таблице 1

Пример 2

В качестве исходного материала для выращивания кристалла использовалась смесь бинарных компонент ZnSe и ZnS с соотношением 1:0.75. Исходные бинарные компоненты измельчали до размера зерна менее 1 мм, тщательно перемешивали и загружали в кварцевую ампулу с внутренним диаметром 10 мм, которую затем откачивали до остаточного давления 5х10-6 Тор и запаивали. Процесс выращивания кристалла проводили в горизонтальной печи при температуре кристаллизации 1270°С и перепаде температуры между зонами испарения и роста 75°С в течение 50 часов. После этого печь с ампулой охлаждали до комнатной температуры со скоростью 50°С/час и извлекали кристалл на воздух. Затем его разрезали алмазным диском перпендикулярно направлению роста на пластины толщиной 3,0 мм, которые подвергали последовательно двухсторонней шлифовке и оптической полировке абразивными порошками М28, М10, М5 и M1. Химический состав и соотношение компонент (х) нарезанных пластин определяли методом EDAX. Параметры фильтров определи по спектрам поглощения в диапазоне длин волн 0,3-3 мкм. Основные параметры (химический состав, крайние значения диапазона граничной длины волны и ширина диапазона граничной длины волны) и сопоставление с параметрами прототипа приведены в Таблице 2. Из таблицы видно, что увеличение температуры синтеза до 1270°С перепада температуры между зонами испарения и роста до 75°С способствует увеличению концентрации х (увеличения концентрации менее летучей компоненты - ZnS).

Пример 3

В качестве исходного материала для выращивания кристалла использовалась смесь бинарных компонент ZnSe и ZnS с соотношением 0.75:1. Исходные бинарные компоненты измельчали до размера зерна менее 1 мм, тщательно перемешивали и загружали в кварцевую ампулу с внутренним диаметром 10 мм, которую затем откачивали до остаточного давления 5х10-6 Тор и запаивали. Процесс выращивания кристалла проводили в горизонтальной печи при температуре кристаллизации 1270°С и перепаде температуры между зонами испарения и роста 75°С в течение 50 часов. После этого печь с ампулой охлаждали до комнатной температуры со скоростью 50°С/час и извлекали кристалл на воздух. Затем его разрезали алмазным диском перпендикулярно направлению роста на пластины толщиной 3,0 мм, которые подвергали последовательно двухсторонней шлифовке и оптической полировке абразивными порошками М28, М10, М5 и M1. Химический состав и соотношение компонент (х) нарезанных пластин определяли методом EDAX. Параметры фильтров определи по спектрам поглощения в диапазоне длин волн 0,3-3 мкм. Основные параметры (химический состав, крайние значения диапазона граничной длины волны и ширина диапазона граничной длины волны) и сопоставление с параметрами прототипа приведены в Таблице 3. Из сопоставления данных таблицы 1 и таблицы 3 видно, что увеличение концентрации менее летучей бинарной компоненты - ZnS при закладке в ампулу с соотношением ZnSe:ZnS=0.75:1 и увеличении температуры синтеза до 1270°С способствует увеличению концентрации до х 0.9.

Способ изготовления фильтров для ИК-диапазона, заключающийся в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора ZnSeS с перепадом температуры между зонами испарения и кристаллизации, отличающийся тем, что слиток ZnSeS выращивают с варьируемым соотношением исходной смеси бинарных компонент ZnSe и ZnS от 1:0.75 до 0.75:1 при температурах 1230-1270°C с перепадом температуры между зонами испарения и кристаллизации 50-75°C.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 322.
13.01.2017
№217.015.6d89

Нанокомпозиционный электроконтактный материал и способ его получения

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения....
Тип: Изобретение
Номер охранного документа: 0002597204
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7009

Способ винтовой прокатки полых заготовок с дном

Изобретение относится к области прокатки из заготовок сплошного сечения деталей с дном. Способ включает следующие операции: отделение мерных штучных заготовок, зацентровку их по торцу, нагрев, подачу во вводной желоб стана винтовой прокатки, перемещение по желобу заталкивателем до касания...
Тип: Изобретение
Номер охранного документа: 0002596519
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.707c

Материал на основе объемных металлических стекол на основе циркония и способ его получения в условиях низкого вакуума

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления...
Тип: Изобретение
Номер охранного документа: 0002596696
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7678

Способ создания тонких слоев оксидов ni и nb с дырочной проводимостью для изготовления элементов сверхбольших интегральных схем

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования. Способ создания тонких слоев оксидов Ni и Nb с дырочной проводимостью для...
Тип: Изобретение
Номер охранного документа: 0002598698
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.793c

Планарный преобразователь ионизирующих излучений и способ его изготовления

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию. Предложена конструкция планарного преобразователя ионизирующих излучений, содержащая слаболегированную полупроводниковую пластину n (p) типа проводимости, в которой расположена...
Тип: Изобретение
Номер охранного документа: 0002599274
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c30

Способ нанесения биоактивного покрытия на основе хитозана на полимерные пористые конструкции

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и...
Тип: Изобретение
Номер охранного документа: 0002600652
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7df0

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002600948
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.862c

Способ стерилизации сверхвысокомолекулярного полиэтилена, предназначенного для применения в медицине (варианты)

Областью применения заявляемого изобретения являются медицина и ветеринария, в частности реконструктивная хирургия, ортопедия и травматология, а также экспериментальная биология. Сутью заявляемого изобретения является способ стерилизации СВМПЭ, предназначенного для применения в медицине, путем...
Тип: Изобретение
Номер охранного документа: 0002603477
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.863f

Способ получения сплава неодим-железо и устройство для его осуществления

Изобретение относится к электролитическому получению сплавов. Получают сплав неодим-железо, содержащий 78-96 мас.% неодима. В электролизер загружают оксид неодима, железо в виде стружки, расплав солевой смеси в качестве электролита через загрузочный карман, в котором устанавливают температуру...
Тип: Изобретение
Номер охранного документа: 0002603408
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8730

Способ интенсификации процесса кучного выщелачивания золота из руд

Изобретение относится к извлечению благородных металлов кучным выщелачиванием из руд. Способ включает дробление руды, складирование штабеля руды на гидроизолированное основание, монтирование системы орошения и орошение щелочным раствором цианида натрия штабеля руды. При этом штабель руды...
Тип: Изобретение
Номер охранного документа: 0002603411
Дата охранного документа: 27.11.2016
Показаны записи 31-40 из 45.
29.12.2017
№217.015.fda7

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002638069
Дата охранного документа: 11.12.2017
20.01.2018
№218.016.1747

Способ доставки криогенных топливных мишеней для лазерного термоядерного синтеза

Изобретение относится к способу доставки криогенных топливных мишеней (КТМ) для энергетических систем, работающих по схеме управляемого инерциального термоядерного синтеза (ИТС). В заявленном способе размещают каждую из криогенных топливных мишеней в носитель и продвигают носитель вдоль...
Тип: Изобретение
Номер охранного документа: 0002635660
Дата охранного документа: 15.11.2017
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.375c

Многослойный электромагнитный экран

Изобретение относится к области электротехники, а именно к конструкции многослойного экрана для защиты от электромагнитных полей в широком диапазоне частот, и может быть использовано для обеспечения электромагнитной совместимости блоков в комплексах электронной аппаратуры. Многослойный...
Тип: Изобретение
Номер охранного документа: 0002646439
Дата охранного документа: 06.03.2018
09.05.2018
№218.016.37d3

Способ получения катодного материала на основе металла платиновой группы и бария

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники, в частности ламп бегущей волны, магнетронов и т.п. Способ получения катодного материала на основе металла платиновой...
Тип: Изобретение
Номер охранного документа: 0002646654
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3af7

Прессованный металлосплавный палладий-бариевый катод и способ его получения

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники. Прессованный металлосплавный палладий-бариевый катод выполнен трехслойным из двух сплошных палладиевых лент и размещенной...
Тип: Изобретение
Номер охранного документа: 0002647388
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.46bd

Многослойные магниторезистивные нанопроволоки

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002650658
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.49bb

Способ получения поглощающего материала на основе замещенного гексаферрита бария

Изобретение относится к получению магнитно-диэлектрических материалов, поглощающих электромагнитное излучение, и может быть использовано в радиоэлектронной технике при производстве принимающих антенн, осуществляющих селективное радиопоглощение в субтерагерцовом диапазоне (0,09-0,1 ТГц)....
Тип: Изобретение
Номер охранного документа: 0002651343
Дата охранного документа: 19.04.2018
08.07.2018
№218.016.6e1b

Способ получения поликристаллических ферритов-гранатов

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим...
Тип: Изобретение
Номер охранного документа: 0002660493
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7f92

Способ получения ферритовых изделий

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и...
Тип: Изобретение
Номер охранного документа: 0002664745
Дата охранного документа: 22.08.2018
+ добавить свой РИД