×
25.08.2018
218.016.7f27

Способ изготовления таблетированного ядерного топлива

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу изготовления таблетированного ядерного топлива из диоксида урана для тепловыделяющих элементов легководных энергетических ядерных реакторов, а также энергетических реакторов с газовым охлаждением. Способ изготовления таблетированного ядерного топлива, включает формирование шихты, состоящей из дисперсного порошка диоксида урана с легирующими добавками оксидов алюминия и кремния в виде наночастиц и сжатие шихты давлением до 150 МПа между штампами пресса, являющимися электродами, которые находятся под напряжением от высоковольтного источника электропитания, до возникновения искровой плазмы между частицами шихты, повышения электропроводности и температуры загрузки шихты до возникновения равномерной контактной проводимости через межгранулярные контакты. В шихте происходит совмещенное прессование и спекание с использованием плазмы искрового разряда. Изобретение позволяет сократить время и трудозатраты на получение таблетированного ядерного топлива, уменьшить зависимость свойств таблетированного ядерного топлива от физико-химических и технологических свойства порошка UO, уменьшить количество отходов. 3 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к способу изготовления таблетированного ядерного топлива из диоксида урана для тепловыделяющих элементов легководных энергетических ядерных реакторов (Light Water Reactors), а также энергетических реакторов с газовым охлаждением (Advanced Gas-Cooled Reactors).

Современная технология изготовления таблетированного ядерного топлива включает три основных этапа [Туманов Ю.Н. Плазменные, высокочастотные, микроволновые и лазерные процессы в химико-металлургических процессах. М.: Физматлит, 2010, 968 с.]:

1. Газовая конверсия слабообогащенного по U-235 гексафторида урана (~5% U-235) в дисперсный диоксид урана (UO2) смесью водорода с водяным паром в горизонтальной вращающейся нагреваемой электрическим током печи (процесс IDR - Integrated Dry Rout) или в газопламенном или в плазменном реакторе.

2. Прессование таблеток из дисперсного порошка UO2 с использованием различного оборудования и различных операций в разных странах. Например, в British Nuclear Fuels - уплотнение в вибромельнице в течение 30 мин, смешение со связывающим (10% раствор поливинилового спирта в воде) в количестве 5% мас.; виброгрануляция в течение 15 мин; прессование таблеток при давлении 1,5 т/см2. На урановых заводах РФ эта процедура модифицирована путем введения в готовый пластификатор водных растворов растворимых в воде соединений алюминия и кремния в качестве легирующих добавок, формирования однородной смеси, перемешивая полученную смесь с диоксидом урана или смесью диоксида урана с выгорающим поглотителем и/или с триуран-октаоксидом, приготовления из полученной шихты пресс-порошка, прессования таблеток.

3. Спекание таблеток UO2 в промышленной печи при температуре 1750°C, шлифование таблеток. Плотность таблеток, в зависимости от комплекса физико-химических и технологических свойств оксидного уранового порошка обычно находится в интервале 10,5-10,8 г/см3.

Технология имеет многочисленные проблемы, обусловленные:

- сильной зависимостью свойств таблетированного ядерного топлива и его поведения в ядерном реакторе от физико-химических и технологических свойств дисперсного диоксида урана, которые в значительной степени определяются технологией, принятой на первом этапе;

- длительным и затратным циклом стадий прессования топливных таблеток с их последующим спеканием, включающим введение в пластификатор водных растворов растворимых в воде легирующих добавок, формирование однородной смеси, перемешивание полученной смеси с диоксидом урана или смесью диоксида урана с выгорающим поглотителем, приготовление из полученной шихты пресс-порошка, прессование таблеток, само высокотемпературное спекание и последнее - шлифование полученных таблеток. Во время проведения этих многочисленных операций всегда есть вероятность снижения ядерной чистоты урана в таблетированном ядерном топливе. Часть готовых таблеток при визуальной отбраковке попадает в отходы с признаками дефектов (например, трещины).

Известно множество способов изготовления оксидного таблетированного топлива, включающих раздельное прессование таблеток из диоксида урана и их спекание с последующей шлифовкой, которые включают штатные операции приготовления шихты, ее гранулирование с приготовлением пресс-порошка, прессование из него таблеток с последующим их спеканием и шлифованием и отличаются друг от друга только подготовкой легирующих добавок, химической природой и фазовым состоянием («жидкое» либо «сухое») используемого связующего, составом шихты и различными вариантами технологии ее приготовления. Диоксид урана на этой стадии легируют микродобавками алюминия либо алюминия совместно с одним из элементов Ti, Nb, Si, Са, Mg, Be или их смесью [RU 2268507 Таблетка ядерного керамического топлива с регулируемой микроструктурой G21C 3/62, G21C 21/00, опубл. 20.01.2006, бюл. №2; RU 2362223 Ядерное уран-гадолиниевое топливо высокого выгорания на основе диоксида урана и способ его получения G21C 21/02, опубл. 20.07.2009, бюл. №20; RU 2376665 Таблетка ядерного топлива высокого выгорания и способ ее изготовления G21C 3/62, опубл. 20.12.2009, бюл. №35]. Во всех способах и алюминий, и другие легирующие элементы вводятся в порошок диоксида урана в виде твердых кристаллических соединений, чаще всего в виде порошков соответствующих оксидов. При этом для достижения приемлемого уровня макро- и микрооднородности шихты практикуют введение в порошок диоксида урана избыточных количеств добавок (суммарно до 0,4% мас. по отношению к урану), что отрицательно сказывается на ядерной чистоте изготавливаемых таблеток.

Существенным недостатком рассматриваемых способов изготовления крупнозернистого керамического топлива является их сложность, обусловленная необходимостью проведения операций при подготовке легирующих оксидов: прокалка отдельных оксидов, их предварительное совместное спекание, тонкое измельчение, выделение из помолов рабочих фракций и т.п.

В качестве ближайшего аналога изобретения принят способ получения таблеток ядерного керамического топлива с и регулируемой микроструктурой [RU 2525828, G21C 3/62, опубл. 20.08.2014, бюл. №23]. Способ включает введение в готовый пластификатор или в воду на этапе приготовления пластификатора водных растворов растворимых в воде соединений алюминия и кремния в качестве легирующих добавок, формирование однородной смеси, перемешивание полученной смеси с диоксидом урана или смесью диоксида урана с выгорающим поглотителем и/или закисью-окисью урана, приготовление из полученной шихты пресс-порошка, прессование таблеток, их высокотемпературное спекание и шлифование. При этом в качестве растворимых в воде соединений алюминия и кремния используют нитрат алюминия и силикат натрия, а в качестве выгорающего поглотителя используют оксид эрбия или оксид гадолиния в количестве 0,3-15,0% мас. от массы диоксида урана; закись-окись урана используют в количестве не более 30% мас. от массы диоксида урана.

Недостаток способа многостадийность процесса, увеличивающих продолжительность и затраты на фабрикацию таблеток ядерного керамического топлива.

Целью изобретения является создание способа изготовления таблетированного ядерного топлива, позволяющего сократить время и трудозатраты на получение таблетированного ядерного топлива на основе диоксида урана, уменьшить зависимость свойств таблетированного ядерного топлива от физико-химических и технологических свойства порошка UO2, уменьшить количество отходов.

Поставленная задача решается тем, что способ изготовления таблетированного ядерного топлива, включающий формирование шихты в виде однородной смеси, состоящей из пластификатора с легирующими добавками и диоксида урана или смеси диоксида урана с выгорающим поглотителем и/или закисью-окисью урана, прессование таблеток, их высокотемпературное спекание и шлифование, при этом легирующие добавки оксидов алюминия и кремния вводят в шихту виде наночастиц, шихту сжимают давлением до 150 МПа в объеме, соответствующем размерам таблетки, между штампами пресса, находящиеся под напряжением от источника электропитания, до возникновения искровой плазмы между частицами шихты, и продолжают сжатие с одновременным нагревом шихты от искровой плазмы до получения таблетки с плотностью, близкой или равной теоретической плотности, после чего таблетка остывает в штампе. На штампы пресса подают от высоковольтного выпрямителя постоянный электрический ток 1,5-2,5 кА в импульсном режиме или от высокочастотного генератора высокочастотный электрический ток 1,5-2,5 кА. Процесс прессования и спекания шихты ведут в вакуумной камере при остаточном давлении 5⋅10-3 Па в интервале времени от 5 до 25 мин, включая время увеличения температуры и время выдержки

Для этого шихту, в виде дисперсного порошка UO2 при необходимости в смеси с легирующими добавками и выгорающим поглотителем, загружают в графитовую пресс-форму и сжимают между стальными штампами гидравлического пресса, на которые подают высокое напряжение от высоковольтного источника электропитания. При этом в зазорах между частицами шихты возникают искровые разряды и генерируется искровая плазма, быстро повышающая температуру шихты до ~2000°C, и электропроводность порошкообразного диоксида урана, которая стимулирует контактную проводимость загрузки; в результате возникает электрический ток в шихте.

Диоксид урана в обычных условиях не является проводником. При температурах до ~1150°С диоксид урана является примесным полупроводником p-типа. При более высоких температурах диоксид урана переходит в область собственной проводимости (проводимость n-типа), которая существует вплоть до температуры плавления 2880°C. Температура, при которой диоксид урана формально становится проводником (достигает 106 См/м), составляет ~2000 К (~1773°C). В области собственной проводимости электрическая проводимость диоксида урана обусловлена положительно заряженными дырками, образующимися вследствие отклонения от стехиометрии. Значения энергии активации проводимости имеют значительный разброс и находятся в пределах 0,15-0,75 эВ. В области собственной проводимости энергия активации проводимости обладает более высокими значениями, лежащими в интервале 1,15-1,30 эВ. Перенос электричества в диоксиде урана осуществляется малыми поляронами (электрон или дырка, связанные с фононами), которые прыгают от одного катиона к соседнему, т.е. между U4+ и U5+. Проводимость диоксида урана определяет силу тока, который протекает через контакты между его частицами.

Альтернативно в качестве источника можно использовать высокочастотный генератор, требуемая частота которого определяется устойчивостью плазмы искрового разряда (искрение в порошковой загрузке). Шихту, в виде порошкообразного UO2 с легирующими и прочими добавками, обрабатывают плазмой искрового разряда и высокочастотным током, протекающим через контакты между частицами; при этом энергия гомогенно диссипируется во всем образце; в таком режиме осуществляется эффективное спекание при сравнительно низких энергозатратах. В процессе высокоэнергетические импульсы концентрируются при точечном межгранулярном связывании, в результате чего возникает значительное улучшение спекания, в сравнении с обычным горячим прессованием и горячим изостатическим спеканием под давлением.

Механизм процесса спекания при использовании высокочастотного генератора такой же: при подведении напряжения на стальные штампы пресса возникают искровые разряды в пространстве между частицами шихты, и моментально возникает локальная высокая температура в плазме, находящейся в промежутке между частицами. Поверхность частиц сжатой давлением шихты плавится и происходит испарение материала, между частицами материала возникают «шейки», обуславливающие наличие контактной поверхности. Эти «шейки» постепенно развиваются, при дальнейшем спекании развивается пластическая деформация, в результате чего материал быстро уплотняется до 99% от теоретической плотности. Поскольку температура частиц растет очень быстро за счет дальнейшего возрастания тока, исходная шихта все больше компактируется.

Фабрикацию таблетированного ядерного топлива проводят в вакуумной камере при остаточном давлении 5⋅10-3 Па. Нагревание, плавление и спекание шихты под действием искровой плазмы протекают и заканчиваются в интервале 5-25 минут, включая время роста температуры и время выдержки.

С высокой эффективностью предлагаемый способ изготовления таблетированного ядерного топлива может быть использован при изготовлении из диоксида урана топливных таблеток высокой ядерной чистоты с регулируемой микроструктурой. Для этого легирующие добавки оксидов алюминия и кремния вводят в порошок UO2 в виде частиц малых размеров (наночастиц). Это позволяет сохранить в радикально новых условиях механизм регулирования микроструктуры, разработанный в способе-прототипе. Плотность таблеток может достигать 99% от теоретической плотности, но, в зависимости от комплекса физико-химических и технологических свойств исходного оксидного уранового порошка, меняется в интервале 10,6-10,9 г/см3.

Использование наночастиц Al2O3 и SiO2 для регулирования микроструктуры основано на следующих принципах:

1. В объемных наноизделиях с поликристаллической структурой с уменьшением размера зерен объемная доля границ раздела (границ зерен и тройных стыков) значительно возрастает, что оказывает значительное влияние на свойства материалов. Объемная доля тройных стыков значительно возрастает при размерах зерен менее 10 нм. При этом радикально повышается прочность поликристаллического изделия, сфабрикованного из нанопорошков методами порошковой металлургии, с сохранением пластичности. Функциональные свойства конструкционных материалов определяется комплексом свойств, включающим соотношение между прочностью (предел текучести и предел прочности) и пластичностью (относительная равномерная деформация, полное относительное удлинение до разрушения), а также вязкость разрушения.

2. С уменьшением размера частиц давление прессования, необходимое для достижения заданной плотности таблеток, увеличивается. При размере зерна меньше некоторого критического частицы становятся бездислокационными, соответственно значительно возрастает давление, необходимое для их деформирования. С другой стороны, с уменьшением размера частиц температура спекания шихты заметно уменьшается. При высоких температурах плотность таблеток возрастает, но, при использовании обычной порошковой металлургии, увеличивается размер зерна, что является нежелательным, с точки зрения достижения высоких функциональных свойств таблеток. Тем не менее, даже при всех недостатках обычной порошковой металлургии микротвердость нанокристаллических материалов в 2-7 раз выше, чем твердость крупнозернистых аналогов, причем это не зависит от метода получения материала.

3. Для фабрикации таблетированного ядерного топлива использовали порошковую металлургию нового поколения, в которой при высокой температуре зерна практически не успевают вырасти: таблетки изготавливали путем совмещенного прессования и спекания нанопорошков диоксида урана с использованием плазмы искрового разряда и стимулированной ею контактной проводимости.

4. Для дальнейшего повышения функциональных свойств таблеток UO2 можно использовать одновременно легирование различными добавками, которые повышают твердость при сохранении высокой электропроводности и теплопроводности.

Итоговый механизм получения таблеток ядерного топлива спеканием порошков с использованием плазмы искрового разряда сводится к следующему. Шихту порошка UO2 с легирующими добавками в виде нанопорошка UO2 (или дисперсный порошок) загружают в графитовую пресс-форму и сжимают ее штампами гидравлического пресса, на которые подают напряжение от импульсного генератора постоянного тока или высокочастотного генератора. При напряжении, приложенном через электроды к массе порошка, сжимаемой штампами пресса в пресс-форме между частицами последнего возникают искровые разряды, в зазорах между частицами генерируется искровая плазма, развиваются температуры ~2000°С. Температура частиц порошка увеличивается, возрастает их электропроводность, это стимулирует возрастание контактной проводимости и рост электрического тока через загрузку между электродами.

Примеры осуществления способа

Пример 1. Требуется получить таблетки уранового керамического топлива диаметром 7,57-7,60 мм с плотностью в пределах 10,6-10,9 г/см3 и размером зерна в пределах 10-30 мкм.

Шихта состояла из смеси порошка UO2, полученного по газопламенной технологии, и легирующей добавки - нанопорошка оксида алюминия, полученного по технологии плазменной денитрации. Необходимое количество добавки Al2O3 рассчитывали из требуемого содержания алюминия в таблетке, равного 40 ppm.

Для изготовления таблетки использовали оборудование, работающее по технологии Spark Plasma Sintering System - Dr. Sinter - LΛB: Model SPS-515S.

Параметры процесса совмещенного прессования и спекания:

- давление прессования шихты - 145 МПа;

- температура спекания шихты в таблетки - 1640 С;

- разрежение в вакуумной камере - 5⋅10-3 Па;

- электрический ток в шихте во время импульса - 1450 А;

- продолжительность процесса совмещенного прессования и спекания - 8,6 мин.

Спеченные таблетки шлифовали на бесцентрово-шлифовальном станке ВШ-826.

Получили: плотность таблеток - 10,85 г/см3, термическая стабильность геометрических размеров - 0,19% и средний размер зерна 22 мкм.

Пример 2. Требуется получить таблетки уран-эрбиевого керамического топлива диаметром 11,44-11,48 мм с плотностью в пределах 10,60-10,90 г/см3 и размером зерна в пределах 8-20 мкм.

Исходная шихта состояла из смеси порошков UO2, полученного по газопламенной технологии и оксида эрбия 0,6% мас. с легирующей добавкой - нанопорошок оксида алюминия, полученного по технологии плазменной денитрации. Необходимое количество добавки Al2O3 рассчитывали из требуемого содержания алюминия в таблетке, равного 40 ppm.

Для изготовления таблетки использовали оборудование, работающее по технологии Spark Plasma Sintering System - Dr. Sinter - LΛB: Model SPS-515S.

Параметры процесса совмещенного прессования и спекания:

- давление прессования шихты - 141 МПа;

- температура спекания шихты в таблетки - 1710°C;

- разрежение в вакуумной камере - 5⋅10-3 Па;

- электрический ток в загрузке шихты во время импульса - 1400 А;

- продолжительность процесса прессования и спекания - 9,6 мин.

Спеченные таблетки шлифовали на бесцентрово-шлифовальном станке ВШ-826.

Получили: таблетки уран-эрбиевого топлива, легированного алюминием, которые имели плотность 10,88 г/см3, открытую пористость <0,30%, термическую стабильность геометрических размеров (доспекаемость) 0,18% и средний размер зерна 18 мкм.

Пример 3. Требуется получить таблетки уранового керамического топлива диаметром 7,57-7,60 мм с плотностью в пределах 10,60-10,90 г/см3 и размером зерна в пределах 25-40 мкм.

Исходная шихта состояла из смеси порошка UO2, полученного по газопламенной технологии, с легирующими добавками - нанопорошками оксида алюминия и диоксида кремния, полученными по плазменной технологии. Необходимые количества добавок рассчитывали, исходя из требуемого содержания в таблетке алюминия и кремния, равного 40 ppm и 20 ppm, соответственно.

Для изготовления таблетки использовали оборудование, работающее по технологии Spark Plasma Sintering System - Dr. Sinter - LΛB: Model SPS-515S.

Параметры процесса совмещенного прессования и спекания:

- давление прессования шихты - 139 МПа;

- температура спекания шихты в таблетки - 1730°C;

- разрежение в вакуумной камере - 5⋅10-3 Па.

- электрический ток в загрузке шихты во время импульса - 1350 А.

- продолжительность процесса совмещенного прессования и спекания - 15,6 мин.

Спеченные таблетки шлифовали на бесцентрово-шлифовальном станке ВШ-826.

Получили: таблетки UO2-топлива, легированного алюминием и кремнием, которые имели плотность 10,87 г/см3, термическую стабильность геометрических размеров 0,17% и средний размер зерна 32-34 мкм.

Пример 4. Требуется получить таблетки уран-эрбиевого керамического топлива диаметром 11,44-11,48 мм с плотностью в пределах 10,50-10,80 г/см3 и размером зерна в пределах 8-20 мкм при добавлении 30% триуран-октаоксида.

Исходная шихта состояла из смеси порошков UO2, полученного по газопламенной технологии, и оксида эрбия 0,6% мас. с легирующей добавкой - нанопорошком оксида алюминия, полученного по технологии плазменной денитрации. Необходимое количество добавки Al2O3 рассчитывали исходя из требуемого содержания в таблетке алюминия, равного 40 ppm.

Для изготовления таблетки использовали оборудование, работающее по технологии Spark Plasma Sintering System - Dr. Sinter - LΛB: Model SPS-515S.

Параметры процесса совмещенного прессования и спекания:

- давление прессования шихты - 138 МПа;

- температура спекания шихты в таблетки - 1720°C;

- разрежение в вакуумной камере - 5⋅10-3 Па;

- электрический ток в шихте во время импульса - 1300 А;

- продолжительность процесса совмещенного прессования и спекания - 14,6 мин.

Спеченные таблетки шлифовали на бесцентрово-шлифовальном станке ВШ-826.

Получили: таблетки уран-эрбиевого топлива, легированного алюминием, которые имели плотность 10,84 г/см3, открытую пористость <0,30%, термическую стабильность геометрических размеров (доспекаемость) 0,07% и средний размер зерна 15 мкм.

Пример 5. Требуется получить таблетки уран-эрбиевого керамического топлива диаметром 11,44-11,48 мм с плотностью в пределах 10,40-10,70 г/см3 и размером зерна до 15 мкм.

Исходная шихта состояла из смеси порошка UO2, полученного по газопламенной технологии, с легирующей добавкой - нанопорошком оксида алюминия, полученного по технологии плазменной денитрации. Необходимое количество добавки Al2O3 рассчитывали исходя из требуемого содержания в таблетке алюминия, равного 40 ppm.

Для изготовления таблетки использовали оборудование, работающее по технологии Spark Plasma Sintering System - Dr. Sinter - LΛB: Model SPS-515S.

Параметры процесса совмещенного прессования и спекания:

- давление сжатия шихты - 145 МПа;

- температура спекания шихты - 1690°С;

- разрежение в вакуумной камере - 5⋅10-3 Па;

- электрический ток в шихте во время импульса - 1300 А;

- продолжительность процесса совмещенного прессования и спекания - 9,6 мин.

Спеченные таблетки шлифовали на бесцентрово-шлифовальном станке ВШ-826.

Получили: таблетки уран-эрбиевого топлива, легированного алюминием, которые имели плотность 10,84 г/см3, открытую пористость <0,30%, термическую стабильность геометрических размеров (доспекаемость) 0,12% и средний размер зерна 11,5 мкм.

Таким образом, в результате всех проведенных экспериментов по технологии совмещенного прессования и спекания с использованием плазмы искрового разряда и активированной контактной проводимости были получены таблетки ядерного топлива с требуемыми свойствами.

Предложенный способ изготовления таблетированного ядерного топлива, позволяет:

- значительно сократить время и трудозатраты на получение таблетированного ядерного топлива на основе диоксида урана путем совмещения операций прессования и спекания и включения дополнительных механизмов энергетического воздействия;

- значительно уменьшить зависимость свойств таблетированного ядерного топлива от физико-химических и технологических свойства порошка UO2, а также от влияния способа получения диоксида урана на его свойства и технико-экономические параметры процесса;

- уменьшить количество отходов за счет совмещения операций прессования и спекания, при котором становятся несущественными многие ограничения по физико-химическим и технологическим свойствам дисперсного диоксида урана.

Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
27.02.2013
№216.012.2a5e

Способ изготовления сверхпроводниковых однофотонных детекторов

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных...
Тип: Изобретение
Номер охранного документа: 0002476373
Дата охранного документа: 27.02.2013
27.12.2013
№216.012.907e

Способ утилизации продувочной воды циркуляционной системы

Изобретение может быть использовано на тепловых электростанциях. Способ включает осветлительное фильтрование и глубокое умягчение потока продувочной воды перед утилизацией, подачу в циркуляционную систему добавочной воды и предварительное ее умягчение реагентной декарбонизацией и...
Тип: Изобретение
Номер охранного документа: 0002502683
Дата охранного документа: 27.12.2013
27.02.2014
№216.012.a741

Способ прогнозирования степени охрупчивания теплостойких сталей

Изобретение относится к методам тепло-прочностных испытаний конструкционных материалов преимущественно при прогнозировании и оценке работоспособности необлучаемых конструктивных элементов в атомной технике. Для продления срока службы корпусов реакторов типа ВВЭР предварительно определяют уровни...
Тип: Изобретение
Номер охранного документа: 0002508532
Дата охранного документа: 27.02.2014
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
27.12.2019
№219.017.f325

Устройство для вырезки отверстий и трепанов

Изобретение относится к машиностроению, а именно к технологическому оборудованию для атомной энергетики. Устройство содержит механизм вращения и подачи режущего инструмента и подвижную платформу. В вертикальной стенке ремонтной кабины выполнено сквозное отверстие для установочной втулки, на...
Тип: Изобретение
Номер охранного документа: 0002710256
Дата охранного документа: 25.12.2019
17.06.2023
№223.018.7e43

Способ корректировки погрешности показаний мощности ядерного реактора

Изобретение относится к ядерной энергетике, а именно к средству контроля нейтронного потока для обеспечения контроля, управления и защиты корпусных ядерных реакторов. Изобретение может быть использовано для коррекции погрешности показаний мощности ядерного реактора и аппаратуры контроля...
Тип: Изобретение
Номер охранного документа: 0002771891
Дата охранного документа: 13.05.2022
Показаны записи 1-10 из 36.
20.01.2013
№216.012.1c2f

Способ приготовления порошка диоксида урана

Изобретение относится к технологии производства ядерного топлива для энергетических реакторов, в частности, к процессам получения порошков диоксида урана для изготовления сердечников твэлов. Способ приготовления порошка двуокиси урана, содержащего выгорающий поглотитель, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002472709
Дата охранного документа: 20.01.2013
20.06.2013
№216.012.4c7e

Способ предотвращения воспламенения, горения и взрыва водородовоздушных смесей

Изобретение относится к обеспечению пожарной безопасности и взрывобезопасности, может быть использовано при получении, хранении, транспортировке водорода, в производствах, связанных с образованием водорода в качестве основного и/или побочного продукта. Способ предотвращения воспламенения,...
Тип: Изобретение
Номер охранного документа: 0002485164
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.521e

Способ переработки жидких радиоактивных отходов и устройство для его осуществления

Изобретение относится к технологии переработки жидких отходов, в том числе и радиоактивных отходов (РАО). Производится кальцинация раствора РАО в микроволновом плазменном реакторе, затем получение гомогенного расплава стекла в частотном плавителе прямого индукционного нагрева. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002486615
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5676

Десублимационный аппарат

Изобретение относится к оборудованию для переработки сублимирующихся материалов, в частности для проведения процесса десублимации-сублимации тетрафторида кремния или гексафторида урана. Десублимационный аппарат содержит цилиндрический теплоизолированный обогреваемый корпус, соосную с ним камеру...
Тип: Изобретение
Номер охранного документа: 0002487742
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.73e0

Испаритель криогенной жидкости

Изобретение относится к криогенной технике, а именно к испарителям криогенной жидкости, и может быть использовано в газификационных установках. Испаритель криогенной жидкости содержит корпус с камерами подвода и выдачи хладагента, теплообменные элементы, содержащие камеру жидкого хладагента и...
Тип: Изобретение
Номер охранного документа: 0002495321
Дата охранного документа: 10.10.2013
10.04.2014
№216.012.b797

Способ очистки тетрафторида циркония от примесей

Изобретение относится к металлургии. Способ очистки тетрафторида циркония от примесей включает сублимацию тетрафторида циркония в смеси с 8-30 мас.% металлического циркония и десублимацию образующихся паров. В качестве металлического циркония могут быть использованы измельченные отходы в виде...
Тип: Изобретение
Номер охранного документа: 0002512726
Дата охранного документа: 10.04.2014
27.05.2014
№216.012.caad

Способ экстракционной очистки нитратных растворов, содержащих рзм

Изобретение относится к экстракционной очистке нитратных растворов, содержащих редкоземельные металлы (РЗМ), от примесей, в частности от Fe, Al, Ca, Mg и радиоактивных примесей, в том числе от тория. Способ включает многоступенчатую противоточную экстракцию примесей из водного азотнокислого...
Тип: Изобретение
Номер охранного документа: 0002517651
Дата охранного документа: 27.05.2014
27.07.2014
№216.012.e4fa

Способ футерования реторт для получения металлов и сплавов металлотермической восстановительной плавкой

Изобретение относится к способу футерования реторт для получения металлов и сплавов металлотермической восстановительной плавкой. Способ включает установку съемной вставки в реторту с зазором между стенкой реторты и вставкой, загрузку материала футеровки в зазор между вставкой и стенкой реторты...
Тип: Изобретение
Номер охранного документа: 0002524408
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e63d

Сублимационный аппарат для глубокой очистки веществ

Изобретение предназначено для получения веществ высокой степени чистоты и может быть использовано в химической промышленности для получения цветных, редких и рассеянных элементов, в том числе циркония и гафния. Сублимационный аппарат для глубокой очистки веществ содержит теплоизолированную...
Тип: Изобретение
Номер охранного документа: 0002524734
Дата охранного документа: 10.08.2014
10.11.2014
№216.013.0564

Аппарат для металлотермического получения металлов и сплавов в непрерывном режиме

Изобретение относится к металлургии для получения редких и редкоземельных металлов методом кальцийтермического восстановления, в частности к аппарату для металлотермического получения металлов и сплавов. Аппарат имеет корпус, тигель с выпускным каналом и металлоприемник, при этом тигель...
Тип: Изобретение
Номер охранного документа: 0002532778
Дата охранного документа: 10.11.2014
+ добавить свой РИД