×
25.08.2018
218.016.7ee4

Результат интеллектуальной деятельности: ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002664684
Дата охранного документа
21.08.2018
Аннотация: Использование: для создания волоконно-оптические средства измерения давления. Сущность изобретения заключается в том, что волоконно-оптический датчик давления содержит каркас, волоконно-оптический световод, расположенный коллинеарно оси каркаса, и приемник излучения, каркас представляет собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью, слоя с n-проводимостью и расположенного между ними светоизлучающего p-n переходного слоя, на внешнюю сторону слоя с p-проводимостью и/или внешнюю сторону слоя с n-проводимостью каркаса нанесены пьезоэлектрические слои с направлением поляризации, обеспечивающим возникновение электрического напряжения в каркасе под действием давления, на внешние стороны пьезоэлектрических слоев, или пьезоэлектрического слоя и слоя с p-проводимостью, или пьезоэлектрического слоя и слоя с n-проводимостью нанесены непрерывные вдоль оси датчика управляющие электроды, при этом волоконно-оптический световод расположен внутри или вблизи светоизлучающего p-n переходного слоя с возможностью передачи выходящего из указанного слоя светового потока приемнику излучения. Технический результат - обеспечение возможности увеличения рабочей поверхности волокна, определения функции распределения неоднородного по всей длине волокна давления, локация зон повышенного давления. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения давления, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Известен волоконно-оптический торцевой датчик давления (патент RU №2522791, опубл. 20.07.2014), состоящий из записанной на оптическом световоде волоконно-оптической решетки Брэгга (ВБР), мембраны, корпуса, при этом мембрана жестко прикреплена к световоду и имеет возможность движения по осевой линии относительно корпуса, оптический световод жестко прикреплен к торцу корпуса по его осевой линии.

Недостатком известного устройства является его возможность измерения давления лишь вблизи мембраны.

Известен волоконно-оптический датчик давления (патент RU №2270428, опубл. 20.02.2006 г.), состоящий из чувствительного элемента, источника света, световодов, регистрирующей аппаратуры; датчик снабжен направляющей линзой, анализатором, приемной линзой, чувствительный элемент снабжен пластиной из оптически активного материала с отверстием, в качестве источника света используют источник поляризованного света.

Недостатком известного устройства является его возможность измерения давления лишь вблизи торцевого сечения оптоволокна.

Известен волоконно-оптический датчик давления (патент РФ №92004980, опубл. 1995.07.09), в корпусе которого закреплена мембрана с жестким центром и утолщенной периферийной частью и два волоконно-оптических преобразователя, выполненных в виде световодов с источником света и фотоприемниками. Торцы световодов установлены соответственно напротив центральной и периферийной части мембраны. Между отражающими поверхностями мембраны и торцами световодов выполнена светозащитная перегородка, имеющая конфигурацию, аналогичную конфигурации периферийной части мембраны.

Недостатком известного устройства является его возможность измерения давления лишь вблизи мембраны.

Наиболее близкой конструкцией того же назначения к заявленному изобретению по совокупности признаков является волоконно-оптический датчик давления (заявка на изобретение №2003118756, опубл. 23.06.2003), состоящий из корпуса, подводящих и отводящих оптических волокон, относительно общего торца которых с зазором установлена жестко закрепленная кварцевая мембрана, приемник излучения. Процесс измерения давления осуществляется путем регистрации приемником изменения интенсивности светового потока на выходе световода в зависимости от прогиба мембраны под действием давления. Данная конструкция принята за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - каркас, волоконно-оптический световод, расположенный коллинеарно оси каркаса и приемник излучения.

Недостатком известного устройства, принятого за прототип, является его возможность измерения давления лишь вблизи мембраны.

Задачей изобретения является повышение эффективности работы волоконно-оптического датчика давления для протяженных участков контроля.

Технический результат изобретения заключается в увеличении рабочей поверхности волокна, определении функции распределения неоднородного по всей длине волокна давления, локации зон повышенного давления.

Указанный технический результат достигается тем, что в известном волоконно-оптическом датчике давления, содержащем каркас, волоконно-оптический световод, расположенный коллинеарно оси каркаса и приемник излучения, согласно изобретению каркас представляет собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью, слоя с n-проводимостью и расположенного между ними светоизлучающего p-n переходного слоя, на внешнюю сторону слоя с p-проводимостью и/или внешнюю сторону слоя с n-проводимостью каркаса нанесены пьезоэлектрические слои с направлением поляризации, обеспечивающим возникновение электрического напряжения в каркасе под действием давления, на внешние стороны пьезоэлектрических слоев, или пьезоэлектрического слоя и слоя с p-проводимостью, или пьезоэлектрического слоя и слоя с n-проводимостью нанесены непрерывные вдоль оси датчика управляющие электроды, при этом волоконно-оптический световод расположен внутри или вблизи светоизлучающего p-n переходного слоя с возможностью передачи выходящего из указанного слоя светового потока приемнику излучения.

В предпочтительном варианте пьезоэлектрический слой имеет направление поляризации, ортогональное плоскостям слоев.

Признаки заявляемого технического решения, отличительные от прототипа, - каркас представляет собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью, слоя с n-проводимостью и расположенного между ними светоизлучающего p-n переходного слоя; на внешнюю сторону слоя с p-проводимостью и/или внешнюю сторону слоя с n-проводимостью каркаса нанесены пьезоэлектрические слои с направлением поляризации, обеспечивающим возникновение электрического напряжения в каркасе под действием давления; на внешние стороны пьезоэлектрических слоев, или пьезоэлектрического слоя и слоя с p-проводимостью, или пьезоэлектрического слоя и слоя с n-проводимостью нанесены непрерывные вдоль оси датчика управляющие электроды; волоконно-оптический световод расположен внутри или вблизи светоизлучающего p-n переходного слоя с возможностью передачи выходящего из указанного слоя светового потока приемнику излучения;

пьезоэлектрический слой имеет направление поляризации, ортогональное плоскостям слоев.

Отличительные признаки в совокупности с известными позволяют увеличить рабочую поверхность волокна, определить функции распределения неоднородного по всей длине волокна давления и зоны повышенного давления. Благодаря этому повышается эффективность работы волоконно-оптического датчика давления для протяженных участков контроля.

Волоконно-оптический датчик давления иллюстрируется чертежами, представленными на фиг. 1-7.

На фиг. 1 изображено поперечное сечение волоконно-оптического датчика давления σ с двумя пьезоэлектрическими слоями.

На фиг. 2 изображено поперечное сечение волоконно-оптического датчика давления, в котором для упрощения конструкции один пьезоэлектрический слой и световод размещен на периферии светоизлучающего p-n переходного слоя.

На фиг. 3 изображена заданная функция и производная интенсивности свечения светодиода от значений приложенного напряжения

На фиг. 4 изображен график диагностируемой функции σ(z) распределения давления по длине датчика.

На фиг. 5 изображен измеряемый импульс интенсивности свечения света I1(t)=ΔI1(t) на выходе из оптоволокна на 1-м шаге сканирования.

На фиг. 6 изображены измеряемые I10(t), I20 (t) интенсивности свечения света на выходе из оптоволокна на 10-м и 20-м шагах сканирования.

На фиг. 7 изображены рассчитанные результирующие импульсы ΔI10(t), ΔI20(t) интенсивности свечения света на выходе из оптоволокна на 10-м и 20-м шагах сканирования.

Волоконно-оптический датчик давления (фиг. 1) содержит волоконно-оптический световод 1, каркас, представляющий собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью 2, слоя с n-проводимостью 3 и расположенного между ними светоизлучающего p-n переходного слоя 4, один (фиг. 2) или два пьезоэлектрических слоя 5 с направлением поляризации, обеспечивающим возникновение электрического напряжения в светодиоде, под действием давления σ, непрерывные по длине датчика управляющие электроды 6, 7.

Пьезоэлектрические слои 5 нанесены на внешнюю сторону слоя с p-проводимостью 2 и/или внешнюю сторону слоя с n-проводимостью 3 каркаса. В предпочтительном варианте пьезоэлектрический слой 5 имеет направление поляризации, ортогональное плоскостям слоев.

Непрерывные по длине датчика управляющие электроды 6, 7 нанесены на внешние стороны или пьезоэлектрических слоев 5 (если их два) или пьезоэлектрического слоя 5 (если он один и контактирует со слоем с p-проводимостью 2) и слоя с n-проводимостью 3 (фиг. 2), или пьезоэлектрического слоя 5 (если он контактирует со слоем с n-проводимостью 3) и слоя с p-проводимостью 2.

Световод 1 расположен внутри или вблизи светоизлучающего p-n переходного слоя 4 с возможностью передачи выходящего из слоя 4 светового потока приемнику излучения (на чертеже не показан). В качестве приемника светового потока может быть использован фотодиод.

Датчик может быть выполнен составным, включающем от двух до шести датчиков заявляемой конструкции с различными пространственными поляризациями пьезоэлектрических слоев для различных датчиков. Указанные датчики для фиксации взаимного расположения скреплены между собой защитной полимерной цилиндрической оболочкой (на чертеже не показана). Выполнение датчика составным позволяет учесть анизотропию давления.

Устройство работает следующим образом.

Действие давления σ (фиг. 1, 2) на датчик приводит к деформациям (сжатию) пьезоэлектрических слоев 5 и появлению в них электрического поля, которое действует на светодиод и вызывает (при достижении электрического напряжения на светодиоде некоторого порогового значения) его свечение. Варьированием значением управляющего напряжение Uупр на электродах 6, 7 можно изменять электрическое напряжение и светоотдачу светодиода.

В результате, величина интенсивности света I, исходящего из светодиода и проникающего в световод 1, зависит от величины давления σ и управляющего напряжение Uупр. По световоду 1 световой поток приходит в приемник излучения, в котором по анализу интенсивности света I делается вывод о величине давления σ и его локации по длине датчика.

Информативные а2 и управляющие а1 коэффициенты датчика позволяют выразить электрическое напряжение на светодиоде U=a1Uупр+а2σ через действующее на датчик искомое давление σ и заданное значение управляющего напряжения Uупр на электродах датчика. Коэффициенты а2, а1 находятся экспериментально или в результате численного 3D моделирования решения связанной краевой задачи электроупругости для представительного фрагмента датчика, в частности, в программной системе конечно-элементного анализа ANSYS.

Управляющее напряжение Uупр на электродах датчика может быть, в частности, варьируемой однородной по длине датчика величиной, или в виде бегущей волны электронапряжения с варьируемой амплитудой, или в виде бегущего по электроду локационного электрического видеоимпульса прямоугольной формы, отличного от нуля лишь на локальном участке и с пошаговым изменением величины импульса на каждом цикле прохождения импульсом всей длины датчика.

Подтверждение заявленных технических результатов: увеличение рабочей поверхности волоконного датчика давления, определение функций распределения ƒ(ζ) для неоднородного по всей длине l волоконного датчика давления σ и ƒ1•(ζ) для локации зон повышенного давления σ1• на локальном участке I1⊃l получено в результате проведенных численных экспериментов на основе разработанных алгоритмов и математической модели локации неоднородностей давления по длине оптоволоконного датчика с использованием локационного сканирующего электрического видеоимпульса с пошаговым изменением величины импульса U1 на каждом цикле прохождения исследуемого локального участка l1. Свойства светодиода заданы «S-образной» кривой зависимости интенсивности свечения от приложенного напряжения с характерными точками заданных пороговых напряжений: Umin для начала свечения и Umax для начала насыщенного свечения светодиода (фиг. 3).

Разработаны два алгоритма сканирования неоднородностей давления σ по длине волоконно-оптического датчика давления. Первый алгоритм сканирования позволяет найти функции распределения действующего давления σ по выбранному локальному участку и/или по всей длине датчика по результатам замеряемой на торцевом сечении датчика интенсивности света из оптоволокна с учетом нелинейной зависимости интенсивности света от действующего на светодиод напряжения ; задача сведена к решению интегрального уравнения Фредгольма 1-го рода с разностным ядром, зависящим от рассчитываемых параметров датчика и от производной заданной функции свечения светодиода (фиг. 3). Для частного случая, когда зависимость - ступенчатая функция получено аналитическое решение для функции плотности вероятностей давления на произвольном локальном участке датчика; здесь ядро выражается через

дельта-функцию и интегральное уравнение Фредгольма сводится к алгебраическому.

Второй алгоритм сканирования позволяет непосредственно определить функцию неоднородного давления σ(z) по длине z датчика бегущей волной Uупр(z, t) управляющего напряжения: сначала экспериментально определяют пороговое значение амплитуды Uа(0) волны управляющего напряжения начала свечения на выходе из оптоволокна датчика и, далее, рассматривают последовательность шагов Uа(i) по увеличению амплитуды на малую величину ΔUa, Малое приращение ΔUа амплитуды волны при переходе от (i-1)-го к последующему i-му шагу сканирования инициирует появление «функции импульсов свечения» ΔIi(t) - свечение (дополнительно к уже светящимся участкам по длине датчика) новых участков светодиода датчика на участках z(i) действия узловых значений давления σ•(i). По виду функции импульсов свечения» ΔIi(t) и значению амплитуды Ua(i) на i-м шаге сканирования рассчитываются искомые узловые значения давления σ•(i) и локации соответствующих участков z(i). Таким образом, результирующие функции импульсов свечения ΔIi(t) носят экспериментально-расчетный характер, так как на каждом i-м шаге функции «полного свечения» Ii(t) определяется экспериментально, а вычеты Ii'(i)(t) рассчитываются по найденным на предыдущих шагах i' сканирования значениям давления σ•(i') и их локаций z(i'). Получены результаты (фиг. 4) численного моделирования процесса нахождения давления σ(z) бегущей волной для различных шагов сканирования (фиг. 5, 6, 7). На фиг. 5, 6, 7 изображены графики результатов численного моделирования «измеряемых» Ii(t), рассчитанных вычетов Ii'(i)(t) и результирующих импульсов ΔIi(t) интенсивностей свечения на выходе из оптоволокна на различных шагах сканирования.

Численные экспериментальные испытания показали, что по сравнению с известным устройством, достигается увеличение рабочей поверхности волокна, появляется возможность определения датчиком функции распределения неоднородного по всей длине волокна давления, нахождения локаций зон повышенного давления. Анизотропия давления диагностируется с использованием составного датчика, включающим в себя от двух до шести датчиков заявляемой конструкции (фиг. 1, фиг. 2) с различными пространственными поляризациями пьезоэлектрических слоев для различных датчиков и скрепленных между собой защитной полимерной цилиндрической оболочкой, на которую с внешней стороны действует измеряемое давление. Благодаря этому повышается эффективность работы волоконно-оптического датчика давления для протяженных участков контроля.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 122.
26.08.2017
№217.015.d80e

Способ производства трубных металлоизделий пластической деформацией

Изобретение относится к обработке металлов давлением и предназначено для производства трубных изделий волочением. Способ включает предварительное формирование захватки с заостренным и коническим участками и последующее волочение через монолитную волоку. Исключение вероятности разрушения...
Тип: Изобретение
Номер охранного документа: 0002622552
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d8cf

Способ гидромеханического прессования прутковых изделий

Изобретение относится к обработке металлов давлением и предназначено для производства осесимметричных прутковых изделий гидромеханическим прессованием. Способ включает выдавливание осесимметричной прутковой заготовки, помещенной в контейнер, через коническую матрицу воздействием на задний конец...
Тип: Изобретение
Номер охранного документа: 0002623528
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.e4be

Способ экстракции жирных кислот из растительных масел

Изобретение относится к масложировой промышленности. Способ извлечения жирных кислот из растительного масла включает в себя экстракцию жирных кислот из растительного масла этанолом, их смесь при этом переводят в эмульгированное состояние при температуре в диапазоне от 25°С до 70°С с последующим...
Тип: Изобретение
Номер охранного документа: 0002625676
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e557

Нейтрализующий материал для рекультивации закисленных почв

Изобретение может быть использовано при утилизации отходов промышленного производства. Шлак производства феррованадия силикоалюминотермическим способом используют в качестве нейтрализующего материала для рекультивации закисленных почв терриконников. Изобретение позволяет расширить арсенал...
Тип: Изобретение
Номер охранного документа: 0002626646
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e619

Способ финишной обработки деталей

Изобретение относится к машиностроению и может быть использовано для абразивной обработки плоскостей деталей с низкими параметрами шероховатости без рисок на обработанной поверхности. Сначала детали подвергают получистовой обработке методом микроударного воздействия, которую осуществляют с...
Тип: Изобретение
Номер охранного документа: 0002626706
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e9db

Гистерезисный триггер

Изобретение относится к области автоматики и вычислительной техники и может быть использовано при построении отказоустойчивых самосинхронных схем. Технический результат изобретения заключается в обеспечении возможности использования гистерезисного триггера в резервированных самосинхронных...
Тип: Изобретение
Номер охранного документа: 0002628152
Дата охранного документа: 15.08.2017
29.12.2017
№217.015.f0fb

Способ получения высокотемпературного порошкового композиционного материала на основе карбидов кремния и титана

Изобретение относится к получению композиционного материала на основе карбидов кремния и титана, включающий приготовление порошковой смеси, состоящей из титана, карбида кремния и графита, и механоактивацию порошковой смеси. Порошковая смесь содержит 66 мас. % Ti, 17 мас. % SiC и 17 мас. % С....
Тип: Изобретение
Номер охранного документа: 0002638866
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f15d

Гидроизоляционное морозостойкое покрытие асфальта автомобильной дороги

Изобретение относится к области строительства и может быть использовано для строительства автомобильных дорог. Покрытие содержит полимерную основу, наполнитель - полифракционный диоксид кремния и технологические добавки, включающие трехмерно сшивающий агент - серу, тиксотропный усилитель и...
Тип: Изобретение
Номер охранного документа: 0002638976
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f3a1

Способ получения гранулированного активного угля

Изобретение относится к области получения гранулированных активных углей. Согласно изобретению готовят связующее на основе остаточных продуктов нефтепереработки, измеряют его динамическую вязкость и смешивают с угольной пылью неспекающегося каменного угля. Соотношение компонентов выбирают в...
Тип: Изобретение
Номер охранного документа: 0002637240
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3cd

Способ получения пористых отливок

Изобретение относится к области литейного производства и может быть использовано для получения пористых материалов и изделий из цветных металлов. Из порообразователя, в качестве которого используют дробленый сильвинит и/или отходы его добычи и/или отходы производства калийных удобрений на его...
Тип: Изобретение
Номер охранного документа: 0002637442
Дата охранного документа: 04.12.2017
Показаны записи 11-20 из 20.
07.06.2019
№219.017.7529

Пьезоактюатор (варианты)

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических и пьезомагнитных (магнитострикционных) актюаторов, в частности, в авиации для управления геометрией аэродинамических профилей лопастей вертолетов. Технический результат: увеличение...
Тип: Изобретение
Номер охранного документа: 0002690732
Дата охранного документа: 05.06.2019
14.08.2019
№219.017.bf67

Лопасть воздушного винта с управляемой геометрией профиля

Изобретение относится к области авиации, в частности к конструкциям воздушных винтов. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий соединенные между собой переднюю часть и подвижной закрылок. Подвижной закрылок включает несущие упругие...
Тип: Изобретение
Номер охранного документа: 0002697168
Дата охранного документа: 12.08.2019
03.09.2019
№219.017.c6a1

Сенсорная система

Изобретение относится к области измерительной техники, в частности к сенсорным тактильным системам для измерения геометрических, трибологических и физико-механических характеристик поверхности тела по результатам измерения результирующих сил и моментов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002698958
Дата охранного документа: 02.09.2019
02.10.2019
№219.017.cbd7

Лопасть воздушного винта с управляемой геометрией профиля

Изобретение относится к области авиации. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий переднюю часть и подвижный закрылок, соединенные между собой крепежным устройством. Подвижный закрылок состоит из несущего элемента, верхней и нижней...
Тип: Изобретение
Номер охранного документа: 0002701416
Дата охранного документа: 26.09.2019
26.04.2020
№220.018.1a10

Способ изготовления звукопоглощающей конструкции

Изобретение относится к области авиастроения и касается способа изготовления звукопоглощающей конструкции (ЗПК) резонансного типа, предназначенной для использования в звукопоглощающих панелях турбореактивного двигателя и в транспортной технике, в том числе при изготовлении проточных трактов...
Тип: Изобретение
Номер охранного документа: 0002720151
Дата охранного документа: 24.04.2020
18.06.2020
№220.018.2792

Лопасть воздушного винта с управляемой геометрией профиля

Изобретение относится к области изготовления лопасти. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий соединенные между собой переднюю часть и подвижный закрылок. Подвижный закрылок включает несущие упругие верхнюю и нижнюю обшивки,...
Тип: Изобретение
Номер охранного документа: 0002723567
Дата охранного документа: 16.06.2020
21.06.2020
№220.018.290e

Способ измерения деформаций

Изобретение относится к измерительной технике и может быть использовано для нахождения функций распределения осевых деформаций. Способ измерения деформаций включает измерение функции пространственного распределения осевых деформаций по участкам оптического волокна с брэгговскими решетками...
Тип: Изобретение
Номер охранного документа: 0002723921
Дата охранного документа: 18.06.2020
24.06.2020
№220.018.2999

Составная звукопоглощающая панель

Изобретение относится к звукопоглощающим панелям с ячейками резонансного типа, гасящим звуковые колебания, создаваемые газовыми потоками и их нагнетателями. Составная звукопоглощающая панель состоит из нескольких соединенных между собой секций. Каждая секция содержит внутренний перфорированный...
Тип: Изобретение
Номер охранного документа: 0002724095
Дата охранного документа: 19.06.2020
12.04.2023
№223.018.430a

Пьезоэлектрический биморф изгибного типа

Изобретение относится к устройствам на основе пьезоматериалов, а именно к пьезоактюаторам изгибного типа и предназначено для использования в электронике, управляемой оптике, микромеханике, медицине, машиностроении, в частности, при изготовлении пьезоэлектрических акустических элементов....
Тип: Изобретение
Номер охранного документа: 0002793564
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4667

Резонансная ячейка для гашения акустических волн

Изобретение относится к области авиастроения, а именно к ячейкам звукопоглощающей конструкции резонансного типа. Резонансная ячейка для гашения акустических волн содержит горловинную секцию, камеру и деформируемый элемент. Горловинная секция образует проход, соединяющий камеру с газовым потоком...
Тип: Изобретение
Номер охранного документа: 0002732532
Дата охранного документа: 21.09.2020
+ добавить свой РИД