×
09.08.2018
218.016.7910

Результат интеллектуальной деятельности: Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытаний высокоскоростных летательных аппаратов с двигательной установкой на основе воздушно-реактивного двигателя и может быть использовано для определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях. Сущность изобретения состоит в том, что при определении тяги прямоточного воздушно-реактивного двигателя при летных испытаниях предварительно на стенде моделируют работу двигателя в условиях полета при заданных угле атаки, высоте и скорости полета и определяют аэродинамическое сопротивление проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж летательного аппарата, а по результатам измеренных в полете параметров скоростного воздушного потока определяют величину результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя. Тягу двигателя определяют как разность проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания. Технический результат заключается в определении величины внутренних сил давления и сопротивления интегрированного с фюзеляжем ПВРД по измеренным в полете параметрам и значениям сопротивления внутреннего контура проточного тракта по результатам стендовых испытаний. 5 ил.

Предлагаемое изобретение относится к области испытаний высокоскоростных летательных аппаратов (ЛА) с двигательной установкой на основе воздушно-реактивного двигателя и может быть использовано для определения тяги прямоточного воздушно-реактивного двигателя (ПВРД) при летных испытаниях.

Значение эффективной тяги представляет собой долю тяги ПВРД, интегрированного (расположенного внутри фюзеляжа) с планером ЛА, то есть равнодействующую сил давления и трения, приложенных к внутренней поверхности проточного тракта ПВРД, непосредственно используемую для движения последнего. Важной задачей является повышение точности и оперативности оценки эффективной тяги ПВРД для различных ЛА, что необходимо для определения летно-технических характеристик на стадии создания ЛА.

Известны способы определения тяги ПВРД, основанные на измерении параметров скоростного воздушного потока, а именно, скорости набегающего потока, статических давлений (полей полных давлений в различных сечениях диффузора, камеры сгорания и сопла) по длине двигателя на внешней обшивке и во внутренних каналах двигателя (В.А. Григорьев, «Испытания авиационных двигателей», М., «Машиностроение», 2009 г., стр. 186-187, 205-206; В.Н. Леонтьев «Испытания авиационных двигателей и их агрегатов», М., «Машиностроение», 1976 г., стр. 62-65).

В известных технических решениях замер параметров осуществляется как в процессе летных испытаний, в которых двигатель используется в качестве маршевой силовой установки, так и в результате стендовых испытаний, условия которых аналогичны летным испытаниям, причем при испытаниях на стенде имитируются условия работы при различных высоте, скорости полета и углах атаки. Кроме того, стендовые испытания проводятся не только с постоянным углом между вектором скорости набегающего потока, но и при быстрых изменениях последнего во время эксперимента, как это может быть во время маневра ЛА.

Недостатком газодинамического способа определения тяги, предлагаемого в известных технических решениях, является низкая точность определения импульса реактивной струи в сечении среза сопла, обусловленная сложностью измерений параметров потока в этом сечении, что в свою очередь определяет недостаточную точность определения тяги двигателя.

Известен способ определения тяги ПВРД, основанный на измерении распределения давлений на поверхности носовой части гиперзвуковой летающей лаборатории и продольного ускорения последней в полете (RU 2242736, 2004 г.). Для баллистического способа определения тяги, предлагаемого в известном техническом решении, необходимо точное определение направления вектора тяги двигателя, что возможно только в случае осесимметричной конфигурации сопла и камеры сгорания. Таким образом, недостатком известного технического решения также является недостаточная точность определения тяги двигателя.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является способ определения тяги ПВРД при летных испытаниях, основанный на измерении параметров скоростного воздушного потока, угла атаки, высоты и скорости полета (RU 2579796, 2016 г.).

Известное техническое решение представляет собой аэродинамический способ определения тяги двигателя, при котором также измеряют перегрузку вдоль продольной оси ЛА, а при определении тяги учитывают константы, характеризующие конструкцию и аэродинамику ЛА, а именно: эквивалентную площадь крыла, угол отклонения оси двигателя от продольной оси ЛА, выходной импульс двигателя, ускорение свободного падения и массу ЛА.

Недостатком известного технического решения является низкая точность определения тяги ПВРД, обусловленная необходимостью выполнения кабрирования и пикирования ЛА с постоянной тягой, что сложно реализовать в случае высокоскоростного ЛА с интегрированным проточным трактом ПВРД.

Техническая проблема, решение которой обеспечивается при осуществлении заявляемого изобретения, заключается в повышении точности определения тяги ПВРД при летных испытаниях.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в определении величины внутренних сил давления и сопротивления интегрированного с фюзеляжем ПВРД, причем определение сил сопротивления и внутреннего давления осуществляют по измеренным в полете параметрам и по результатам стендовых испытаний, что обеспечивает более точное определение тяги ПВРД.

Заявленный технический результат достигается за счет того, что при осуществлении способа определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях, основанном на измерении параметров скоростного воздушного потока, угла атаки, высоты и скорости полета, предварительно на стенде моделируют работу двигателя в условиях полета при заданных угле атаки, высоте и скорости полета и определяют аэродинамическое сопротивление проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж летательного аппарата, по результатам измеренных в полете параметров скоростного воздушного потока определяют величину результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя, а тягу двигателя определяют как разность проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как:

- предварительное моделирование на стенде работы двигателя в условиях полета при заданных угле атаки, высоте и скорости полета, определение аэродинамического сопротивления проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж ЛА, обеспечивают определение внутренних сил давления и сопротивления по результатам стендовых испытаний;

- определение по результатам измеренных в полете параметров скоростного воздушного потока величины результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя и определение тяги двигателя как разности проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания обеспечивает определение внутренних сил давления и сопротивления по измеренным в полете параметрам.

Настоящий способ поясняется следующим подробным описанием и иллюстрациями, где:

- на фиг. 1 изображена схема стенда для испытаний исследуемого ПВРД;

на фиг. 2 приведена диаграмма результатов регистрации тягоизмерительной системой усилий, создаваемых ПВРД при стендовых испытаниях;

- на фиг. 3 изображен график распределения статического давления по тракту ПВРД на режиме с подачей топлива;

- на фиг. 4 изображена схема распределения действующих сил при обтекании исследуемого ПВРД воздушным потоком в процессе стендовых испытаний;

- на фиг. 5 изображена схема регистрации усилий, развиваемых ПВРД в процессе стендовых испытаний.

Способ осуществляется следующим образом.

Предварительно на стенде моделируют работу исследуемого объекта, представляющего собой натуральный образец или макет интегрированного в фюзеляж гиперзвукового ЛА высокоскоростного ПВРД. Объект 1 при помощи установочного пилона 2 размещают на динамометрической платформе 3, которая через ленты 4 сжатия связана с платформой 5 стенда (см. фиг. 1). Моделирование осуществляется при помощи аэродинамического сопла 6, осуществляющего обдув объекта 1, и кормового диффузора 7, при условии соблюдения идентичных ожидаемым в полете характеристик: угла (αат,) атаки, высоты и скорости полета, числа Маха, расхода топлива. Усилия от работающего двигателя измеряются при помощи датчиков 8 тяги тягоизмерительной системы стенда. В процессе испытаний на стенде определяют аэродинамическое сопротивление (Rдвгор) проточного тракта внутреннего контура двигателя исходя из условия равенства проекции сил (Rрасч) статических давлений по контуру на ось двигателя и проекции равнодействующей силы (Rизм) на ось тракта стенда, измеренной тягоизмерительной системой на режиме работы двигателя в заданных условиях с учетом угла атаки (αат) воздухозаборного устройства двигателя к набегающему потоку воздуха по оси стенда:

Rрасчcos(αат)=Rизм,

где

Pi (х) - среднее значение статического давления на i-том участке по контуру тракта,

Fi(x) - площадь поперечного сечения на i-том участке по контуру тракта,

l - длина проточного тракта,

х - координата по продольной оси двигателя,

Rизм=R++Rдвгорсоs(αат)+Rф,

где:

Rдвгор=Rрасч-(R++Rф)/соs(αат),

R+ - положительная часть усилия;

Rф - сопротивление фюзеляжа.

При этом также измеряются:

- усилия, развиваемые двигателем в процессе стендовых испытаний, измеряемые датчиками 8 тяги тягоизмерительной системы стенда, по результатам регистрации которых, определяется положительная часть усилия (R+) в проекции на ось стенда от работающего двигателя с подачей топлива в камеру сгорания (превышение тяги над сопротивлением) (см. фиг. 2);

- полные давление и температура набегающего потока;

- расход топлива в камере сгорания;

- распределение статического давления по тракту двигателя на режиме с подачей топлива (см. фиг. 3).

Анализ схемы обтекания исследуемого объекта воздушным потоком при испытании на стенде (см. фиг. 4) показывает, что проекция сил давления по внутреннему тракту на ось двигателя может быть представлена в виде уравнения:

Pi3(Fi3-Fi2)-Pi2(Fi1-Fi2)-Pi4(Fi3-Fi4)-Rф-Rдвгор=R+,

ΣPiΔFi=R++Rф+Rдвгор,

где ΔFi(x) - приращение площади поперечного i-го сечения тракта.

Из анализа схемы регистрации усилий, развиваемых двигателем в процессе стендовых испытаний (см. фиг. 5) следует:

Rизм=R++Rф+Rдвгор.

Сравнивая полученные зависимости с учетом угла атаки, получаем:

ΣPiΔFicos(αат)=Rизм.

Левая часть в уравнении может быть определена по измеренному распределению статического давления на внутренние стенки проточного тракта:

С учетом угла атаки при испытании на стенде исследуемого объекта зависимость может быть представлена в виде

Rрасчcos(αат)=R++Rдвгорcos(αат)+Rф.

Сопротивление фюзеляжа при испытаниях на стенде определяется по результатам расчета аэродинамического сопротивления ЛА. В стендовом варианте конструкции фюзеляж имеет простую хорошо обтекаемую форму без крыльев и рулей, что обеспечивает высокую точность вычисления Rф.

С учетом изложенного сопротивление внутреннего тракта двигателя на режиме работы с подачей топлива для заданных условий определяется из соотношения

Rдвгор=Rрасч-(R++Rф)/соs(αат).

Так как сопротивление тракта двигателя не зависит от работы на стенде или в полете для одинаковых условий, эта величина может быть использована для оценки тяги в полете как разность проекции равнодействующей сил давления на ось тракта и сопротивления тракта двигателя на режиме с горением, которое берется из результатов испытаний на стенде с соблюдением указанных выше условий, максимально приближенных к полетным: по числам Маха, высоте, углу атаки и коэффициенту избытка воздуха.

При этом в полете измеряются распределение статических давлений по тракту двигателя, угол атаки, скорость движения аппарата, высота полета, а по распределению давлений вычисляется проекция равнодействующей силы (Rp ли) на ось тракта двигателя для аналогичных условий при летных испытаниях:

Тягу двигателя при летных испытаниях определяют как разность проекций равнодействующей силы на ось тракта двигателя и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания:

Rли=Rр ли - Rдв гор.

Таким образом, определение внутренних сил давления и сопротивления интегрированного с фюзеляжем ПВРД по измеренным в полете параметрам и по результатам стендовых испытаний обеспечивает повышение точности определения тяги ПВРД при летных испытаниях.

Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях, основанный на измерении параметров скоростного воздушного потока, угла атаки, высоты и скорости полета, отличающийся тем, что предварительно на стенде моделируют работу двигателя в условиях полета при заданных угле атаки, высоте и скорости полета и определяют аэродинамическое сопротивление проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж летательного аппарата, по результатам измеренных в полете параметров скоростного воздушного потока определяют величину результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя, а тягу двигателя определяют как разность проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания.
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Источник поступления информации: Роспатент

Показаны записи 1-10 из 204.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
Показаны записи 1-10 из 24.
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.10.2013
№216.012.73ad

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком...
Тип: Изобретение
Номер охранного документа: 0002495270
Дата охранного документа: 10.10.2013
10.12.2014
№216.013.0e39

Способ количественного определения d-антигена полиовирусов 1-3 типов

Изобретение относится к медицине и касается способа количественного определения D-антигена полиовирусов 1-3 типов иммуноферментным анализом (ИФА). В качестве иммуносорбента используют поливалентный (к трем типам полиовируса) аффинно очищенный иммуноглобулин класса Y (IgY), полученный из яичных...
Тип: Изобретение
Номер охранного документа: 0002535058
Дата охранного документа: 10.12.2014
10.03.2015
№216.013.309f

Способ воспламенения топливной смеси в высокоскоростном врд

Изобретение может быть использовано в космической и оборонной отрасли. Способ воспламенения топливной смеси заключается в том, что в камеру сгорания двигателя подают высокоскоростной поток воздуха, обеспечивают торможение потока, образуют в камере сгорания топливную смесь и воспламеняют ее. Так...
Тип: Изобретение
Номер охранного документа: 0002543915
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.315d

Высокоскоростной прямоточный воздушно-реактивный двигатель

Изобретение может быть использовано в космической и оборонной отрасли. Высокоскоростной прямоточный воздушно-реактивный двигатель (ПВРД) содержит последовательно расположенные воздухозаборное устройство, камеру сгорания (КС) и выходное сопло. В КС размещены форсунки подачи горючего с...
Тип: Изобретение
Номер охранного документа: 0002544105
Дата охранного документа: 10.03.2015
10.07.2015
№216.013.5dfc

Газодинамический воспламенитель основной топливной смеси в проточном тракте

Изобретение относится к акустической теплотехнике. Газодинамический воспламенитель содержит форкамеру с выходным отверстием, ускоритель с соплом, акустический резонатор и магистрали с регулирующими клапанами подвода окислителя и горючего к ускорителю. Ускоритель с соплом и акустический...
Тип: Изобретение
Номер охранного документа: 0002555601
Дата охранного документа: 10.07.2015
20.09.2015
№216.013.7b07

Способ организации детонационно-дефлаграционного горения и детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель

Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования...
Тип: Изобретение
Номер охранного документа: 0002563092
Дата охранного документа: 20.09.2015
20.01.2016
№216.013.a339

Способ сжигания топливо-воздушной смеси и прямоточный воздушно-реактивный двигатель со спиновой детонационной волной

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике...
Тип: Изобретение
Номер охранного документа: 0002573427
Дата охранного документа: 20.01.2016
27.05.2016
№216.015.42c8

Способ организации горения топлива и детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель

Изобретение относится к аэрокосмическим двигателям. Детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, систему непрерывной подачи топлива, решеточный пластинчатый гаситель детонационных волн, расположенный так, что в него...
Тип: Изобретение
Номер охранного документа: 0002585328
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.9041

Способ получения высокоиндексных компонентов базовых масел

Изобретение относится к способу получения высокоиндексных компонентов базовых масел, соответствующих группе II и III по API, и может быть применено в нефтеперерабатывающей промышленности для получения высокоиндексных компонентов базовых масел из непревращенного остатка гидрокрекинга с...
Тип: Изобретение
Номер охранного документа: 0002604070
Дата охранного документа: 10.12.2016
+ добавить свой РИД