×
20.06.2018
218.016.64cf

Результат интеллектуальной деятельности: СВЧ фотонный кристалл

Вид РИД

Изобретение

Аннотация: Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, нечетные элементы фотонного кристалла выполнены в виде прямоугольных металлических резонансных диафрагм с прямоугольными отверстиями, длинные стороны которых параллельны широкой стенке волновода, полностью перекрывающими волновод по поперечному сечению, четные элементы фотонного кристалла представляют собой отрезки прямоугольного волновода между диафрагмами, причем две диафрагмы являются крайними элементами фотонного кристалла, а одна центральной, при этом СВЧ фотонный кристалл дополнительно содержит согласованную нагрузку, соединенную с одним концом фотонного кристалла, Y-циркулятор, один из выходов которого соединен с противоположным концом фотонного кристалла, источник постоянного напряжения, в отверстии центральной диафрагмы размещена, по крайней мере, одна n–i–p–i–n диодная структура, n-области которой гальванически соединены с длинными сторонами отверстия заземленной диафрагмы, p-область n–i–p–i–n диодной структуры соединена с положительным полюсом источника постоянного напряжения, размеры отверстий резонансных диафрагм, кроме центральной диафрагмы, составляют: длина a=20⋅a/23 и ширина b=b/5, толщина диафрагм составляет 0,0005⋅b

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоска (Д.А.Усанов, А.В. Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Фотонные структуры и их использование для измерения параметров материалов Известия вузов. Электроника, 2008, №5, с.25–32).

Недостатком данного фотонного кристалла является изрезанность разрешенной зоны на амплитудно-частотной характеристике и невозможность электрического управления его амплитудно-частотными характеристиками.

Эти недостатки частично устранены в СВЧ-фильтре с регулируемыми положением частотной области пропускания и величиной пропускания в этой области, включающем отрезок волновода, содержащий частотно-селективный элемент и элемент для регулирования затухания, отличающемся тем, что частотно-селективный элемент выполнен в виде одномерного волноводного 11-слойного фотонного кристалла, представляющего собой чередующиеся слои поликора (ε=9.6) толщиной 1 мм и пенопласта (ε=1.1) толщиной 12 мм, с нарушением периодичности в виде уменьшенной до 5.5 мм, 5 мм и 4.5 мм толщины центрального слоя, а элемент для регулирования затухания выполнен в виде p–i–n-диодной структуры, расположенной после фотонного кристалла по направлению распространения электромагнитной волны и подключенной к источнику питания с регулируемым напряжением (см. патент на изобретение РФ №2407114, МПК H01P 1/00).

Недостатком данного СВЧ-фильтра является изрезанность разрешенной зоны на его амплитудно-частотной характеристике, а также недостаточный диапазон регулировки затухания фотонного кристалла на частоте дефектной моды.

Наиболее близким к заявляемому изобретению является волноводный СВЧ фотонный кристалл, реализованный на основе периодически расположенных резонансных диафрагм, каждая из которых представляет собой слой металлизации с отверстием, нанесенный на диэлектрическую подложку с щелью, размеры которой совпадают с размерами отверстия в металлизации (Усанов Д.А., Скрипаль А.В., Мерданов М.К., Евтеев С.Г. Волноводные фотонные структуры на резонансных диафрагмах. Радиотехника. 2015. № 10. С. 108-114).

Недостатком данного фотонного кристалла является изрезанность разрешенной зоны на его амплитудно-частотной характеристике и невозможность электрического управления его амплитудно-частотными характеристиками.

Техническая проблема заключается в создании СВЧ фотонного кристалла с плоской разрешенной зоной на его амплитудно-частотной характеристике, то есть зоной, характеризующейся частотно независимым коэффициентом прохождения электромагнитной волны.

Техническим результатом является достижение частотной независимости коэффициента прохождения электромагнитной волны в разрешенной зоне СВЧ фотонного кристалла при обеспечении возможности электрического управления характеристиками примесной моды затухания колебаний фотонного кристалла.

Указанный технический результат достигается тем, что СВЧ фотонный кристалл, выполненный в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, нечетные элементы фотонного кристалла выполнены в виде прямоугольных металлических резонансных диафрагм с прямоугольными отверстиями, длинные стороны которых параллельны широкой стенке волновода, полностью перекрывающими волновод по поперечному сечению, четные элементы фотонного кристалла представляют собой отрезки прямоугольного волновода между диафрагмами, при этом две диафрагмы являются крайними элементами фотонного кристалла, а одна центральной, согласно решению дополнительно содержит согласованную нагрузку, соединенную с одним концом фотонного кристалла, Y-циркулятор, один из выходов которого соединен с противоположным концом фотонного кристалла, источник постоянного напряжения, в отверстии центральной диафрагмы размещена, по крайней мере, одна n–i–p–i–n диодная структура, n-области которой гальванически соединены с длинными сторонами отверстия заземленной диафрагмы, p-область n–i–p–i–n диодной структуры соединена с положительным полюсом источника постоянного напряжения, размеры отверстий резонансных диафрагм, кроме центральной диафрагмы, составляют длина a0=20⋅a/23 и ширина b0=b/5, толщина диафрагм составляет 0,0005⋅b<d<0,003⋅b, длина четных элементов L составляет 1,8⋅b<L<2,5⋅b, при этом a и b – размеры широкой и узкой стенок волновода, соответственно.

В первом случае центральная диафрагма имеет одно отверстие, n–i–p–i–n-диодная структура расположена около одной из узких границ прямоугольного отверстия центральной диафрагмы, размеры которой составляют длина a1=2⋅a/3 и ширина b1=b/30.

Во втором случае центральная диафрагма имеет два отверстия, отверстия выполнены одинаковыми и расположены параллельно широкой стенке волновода, имеют размеры длиной a2⋅=a/2 и шириной b2=b/10, расположены на равном расстоянии от широких стенок волновода и расстоянии h, равном b/2, друг от друга, в каждом отверстии расположены по две n–i–p–i–n-структуры на равном расстоянии от узких сторон отверстий и расстоянии l, равном a2/3, друг от друга.

Предлагаемое устройство поясняется чертежами:

Фиг.1. Центральная диафрагма фотонного кристалла с одним отверстием.

Фиг.2 Нецентральная диафрагма фотонного кристалла.

Фиг.3. Фотонный кристалл с центральной диафрагмой с одним прямоугольным отверстием.

Фиг.4. АЧХ коэффициента прохождения ⎟D⎟2 фотонного кристалла с центральной диафрагмой с одним прямоугольным отверстием

Кривые 12 и 13 соответствуют двум различным значениям управляющего прямого тока, протекающего через n–i–p–i–n-структуру, I, мА: 11 – 0.0, 12 – 550 мА. Кривая 11 соответствует фотонному кристаллу без нарушения.

Фиг.5. Центральная диафрагма фотонного кристалла с двумя отверстиями.

Фиг.6. Фотонный кристалл с центральной диафрагмой с двумя прямоугольными отверстиями.

Фиг.7. АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями.

Кривые 18–24 соответствуют различным значениям управляющего прямого тока, протекающего через n–i–p–i–n-структуры, I, мА: 18 – 0.0, 19 – 0.0005, 20 – 0.092, 21 – 0.660, 22 – 3.36, 23 – 8.15, 24 – 193.5. Кривая 17 соответствует СВЧ фотонному кристаллу без нарушения.

Фиг.8. Зависимости коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями от величины управляющего прямого тока, протекающего через n–i–p–i–n-структуру, на частотах примесных мод затухания колебаний фотонного кристалла f1эксп и f2эксп, ГГц: 25 – 9.22; 26 – 9.56.

Позициями на чертежах обозначены:

1 – n–i–p–i–n диодная структура;

2 – положительный полюс источника постоянного напряжения;

3 – вход Y-циркулятора;

4 – первый выход Y-циркулятора;

5 – второй выход Y-циркулятора;

6 – Y-циркулятор;

7– СВЧ фотонный кристалл;

8– согласованная нагрузка;

9 – центральная диафрагма СВЧ фотонного кристалла с одним прямоугольным отверстием;

10 – диафрагма СВЧ фотонного кристалла;

11 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла без нарушения;

12 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с одним прямоугольным отверстием при управляющем токе через n–i–p–i–n-структуру I=0 мА;

13 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с одним прямоугольным отверстием при управляющем токе через n–i–p–i–n-структуру I=550 мА;

14 – центральная диафрагма СВЧ фотонного кристалла с двумя прямоугольными отверстиями;

15 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла без нарушения;

16 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=0 мА;

17 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=0.0005 мА;

18 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=0.092 мА;

19 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 сигнала СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=0.660 мА;

20 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=3.36 мА;

21 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=8.15 мА;

22 – экспериментальная АЧХ коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями при управляющем токе через n–i–p–i–n-матрицу I=193.5 мА;

23 – зависимость коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями на частоте примесной моды затухания колебаний фотонного кристалла f1эксп=9.22 ГГц от величины управляющего прямого тока, протекающего через n–i–p–i–n-структуру;

24 – зависимость коэффициента прохождения ⎟D⎟2 СВЧ фотонного кристалла с центральной диафрагмой с двумя прямоугольными отверстиями на частоте примесной моды затухания колебаний фотонного кристалла f2эксп=9.56 ГГц от величины управляющего прямого тока, протекающего через n–i–p–i–n-структуру.

Для реализации СВЧ фотонного кристалла, характеризующегося наличием частотно независимого коэффициента прохождения электромагнитного излучения в разрешенной зоне, была использована схема с циркулятором (см. фиг. 3 и фиг. 6).

Входной сигнал подавался на вход 3 Y-циркулятора (фиг. 3 и фиг. 6), к первому выходу 4 Y-циркулятора (фиг. 3 и фиг. 6) был подключен СВЧ фотонный кристалл 7 (фиг. 3 и фиг. 6) с согласованной нагрузкой 8 (фиг. 3 и фиг. 6), выходной сигнал измерялся на втором выходе 5 Y-циркулятора (фиг. 3 и фиг. 6).

Поскольку при подаче входного сигнала на вход 3 (фиг. 3 и фиг. 6) идеального Y-циркулятора сигнал на второй выход 5 Y-циркулятора (фиг. 3 и фиг. 6) поступает только при наличии отраженной волны на первом выходе 4 Y-циркулятора (фиг. 3 и фиг. 6), то при подключении фотонного кристалла 7 с согласованной нагрузкой 8 на первом выходе 4 Y-циркулятора (фиг. 3 и фиг. 6), коэффициент прохождения ⎟D⎟2 сигнала с входа 3 Y-циркулятора на второй выход 5 Y-циркулятора (фиг. 2 и фиг. 5) определяется коэффициентом отражения фотонного кристалла ⎟R⎟2, с использованием соотношения:

⎟D⎟2=⎟R⎟2. (1)

Таким образом, в области частот, определяющих запрещенную зону СВЧ фотонного кристалла, ⎟R⎟2≈1, согласно выражению (1) коэффициент прохождения ⎟D⎟2 сигнала с входа 3 Y-циркулятора на второй выход 5 Y-циркулятора (фиг. 3 и фиг. 5) близок к единице, что обеспечивает формирование разрешенной зоны с частотно независимым коэффициентом прохождения электромагнитного излучения в диапазоне частот 8.5 ГГц–9.8 ГГц (кривая 11 на фиг.4 и кривая 15 на фиг. 7).

Расчеты и экспериментальные исследования показывают, что в фотонных кристаллах на резонансных диафрагмах, выполненных из металлической фольги, для возникновения примесной моды колебаний в запрещённой зоне необходимо изменить расстояние между выбранными диафрагмами или изменить ширину прямоугольного отверстия диафрагмы. При использовании фотонного кристалла с измененной шириной отверстия одной из диафрагм, например центральной, частотное положение примесной моды колебаний определяется шириной отверстия этой диафрагмы и при её уменьшении смещается в сторону высокочастотного края запрещенной зоны.

Для создания СВЧ фотонного кристалла на резонансных диафрагмах с электрически управляемым размером ширины отверстия диафрагмы, выполняющей роль нарушения, может быть использована конструкция, в которой вблизи одного из краёв центральной диафрагмы с отверстием уменьшенной ширины расположена n–i–p–i–n-структура 1 (см. фиг. 1).

Создание нарушения приводит к возникновению резонансной особенности – примесной моды затухания колебаний в разрешенной зоне фотонного кристалла на частоте f1эксп=9.03 ГГц (см. фиг. 4), которая смещается по частоте на величину, равную 160,0 МГц, в сторону высокочастотного края запрещенной зоны при пропускании достаточно больших прямых токов через n–i–p–i–n-диодную структуру. При этом на частоте примесной моды колебаний 9.03 ГГц наблюдается увеличение коэффициента прохождения от –24.0 дБ при I=0 мА до –3.0 дБ при I=550 мА.

Для создания СВЧ фотонного кристалла на резонансных диафрагмах с электрически управляемыми характеристиками может быть использована конструкция, в которой центральная диафрагма фотонного кристалла содержит два одинаковых параллельных отверстия с размерами a3⋅=11.5 мм и b3=1 мм, расположенные на равном расстоянии от широких стенок волновода и расстоянии h, равном 5 мм, друг от друга. В каждом отверстии расположены по две n–i–p–i–n-структуры на равном расстоянии от узких границ отверстий и расстоянии l, равном 3.83 мм, друг от друга.

На основе численного моделирования с использованием метода конечных элементов в программе ANSYS HFSS исследовались амплитудно-частотные характеристики коэффициентов отражения и прохождения фотонного кристалла при различной удельной электропроводности i-слоя n–i–p–i–n-структуры. Предполагалось, что при прямом смещении удельная электропроводность δ данного элемента изменялась в диапазоне 10–2…105 См/м. Такое изменение величины удельной электропроводности δ, обусловленное обогащением i-областей инжектированными носителями заряда, соответствует величине протекающего тока от 0 до 300 мА при изменении напряжения смещения от 0 до 0.9 В с использованием n–i–p–i–n-структуры типа 2A505.

Введение в каждое прямоугольное отверстие центральной диафрагмы СВЧ фотонного кристалла по две n–i–p–i–n-структуры приводит к возникновению примесной моды затухания колебаний в разрешённой зоне фотонного кристалла на частоте f1теор=8.91 ГГц.

При увеличении удельной электропроводности i-слоя в диапазоне от 0 до 0.4 См/м коэффициент прохождения уменьшается от –0.65 дБ до –47.5 дБ, а в диапазоне от 0.4 до 104 См/м монотонно увеличивается от –47.5 дБ до –0.3 дБ.

Увеличение удельной электропроводности i-слоя n–i–p–i–n-структуры до значений больших 20.0 См/м приводит к исчезновению примесной моды колебаний на частоте f1теор и возникновению на частоте f2теор=9.47 Гц, отличной от f1теор. При этом на частоте f2теор с увеличением удельной электропроводности i-слоя в диапазоне от 0.0 См/м до 270.0 м/м коэффициент прохождения уменьшается от –0.1 дБ до –30.66 дБ. Дальнейшее увеличение удельной электропроводности приводит к монотонному росту коэффициента отражения на частоте f2теор.

Частотные зависимости коэффициента отражения СВЧ фотонного кристалла демонстрируют высокую чувствительность к величине удельной электропроводности i-слоя n–i–p–i–n-структуры. При этом на частотах f1теор и f2теор могут быть получены как монотонно возрастающие или монотонно убывающие, так и немонотонные зависимости коэффициента отражения от величины удельной электропроводности i-слоя выбором диапазона её изменения.

Исчезновение примесной моды колебаний на частоте f1теор и возникновение на другой частоте f2теор при увеличении удельной электропроводности i-слоя n–i–p–i–n-структуры до определенной величины обусловлено эффектом изменения типа резонансного отражения электромагнитного излучения от слоистых структур с проводящими слоями (Усанов Д.А., Скрипаль А.В., Абрамов А.В., Боголюбов А.С. // Письма в ЖТФ. 2007. Т. 33. № 2, с. 13) от так называемого полуволнового резонанса, к четвертьволновому резонансу.

В описанном выше фотонном кристалле роль проводящего слоя играет центральная диафрагма с двумя одинаковыми параллельными отверстиями, в каждом из которых расположены по две n–i–p–i–n-структуры.

При малой толщине и низкой удельной электропроводности проводящего слоя на частоте f1теор, соответствующей минимуму коэффициента прохождения, реализуется распределение электрического поля в стоячей СВЧ-волне, при котором на границе проводящего слоя образуется пучность, а при больших толщинах и высокой удельной электропроводности проводящего слоя минимум коэффициента прохождения возникает на частоте f2теор, отличной от частоты f1теор, что обусловлено возникновением нового распределения электрического поля в фотонном кристалле, при котором на границе проводящего слоя образуется узел электрического поля электромагнитной волны.

Пример практической реализации устройства

Реализовывался фотонный кристалл 3-сантиметрового диапазона длин волн. Фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, нечетные элементы фотонного кристалла выполнены в виде прямоугольных алюминиевых диафрагм с прямоугольными отверстиями, размеры прямоугольных отверстий всех диафрагм, кроме центральной, одинаковы и составляют a0=20 мм и b0=2 мм (фиг. 2), толщина диафрагм равна d=10 мкм. Количество диафрагм фотонного кристалла рано семи, диафрагмы полностью перекрывают волновод по поперечному сечению. Четные элементы фотонного кристалла представляют собой отрезки прямоугольного волновода между диафрагмами длиной L=20 мм, их количество равно шести. Две диафрагмы являются крайними элементами фотонного кристалла, а одна центральной. Продольный размер созданного волноводного фотонного кристалла составил 120,07 мм.

Были изготовлены и экспериментально исследованы две конструкции, отличающиеся центральной диафрагмой фотонного кристалла.

Был изготовлен фотонный кристалл, центральная диафрагма которого содержит одно отверстие с размерами a1=15.33 мм и b1=0.33 мм (фиг. 1). В отверстии около одной из узких сторон расположена n–i–p–i–n-диодная структура 1 типа 2A505 (фиг.1), при этом n-области n–i–p–i–n диодной структуры гальванически соединены с длинными сторонами отверстия заземленной диафрагмы, p-область n–i–p–i–n диодной структуры соединена с положительным полюсом источника постоянного напряжения 2.

Частотные зависимости коэффициентов пропускания фотонного кристалла измерялись в трехсантиметровом диапазоне длин волн с помощью векторного анализатора цепей Agilent PNA-L N5230A.

Амплитудно-частотные характеристики коэффициента прохождения ⎟D⎟2 сигнала с входа 3 Y-циркулятора на второй выход 5 Y-циркулятора 6 при подключении к первому выходу 4 Y-циркулятора 6 фотонного кристалла 7 (фиг. 3), центральная диафрагма 9 которого содержит прямоугольное отверстие и n–i–p–i–n диодную структуру типа 2A505, расположенную у одной из узких сторон этого отверстия, представлены на фиг.4. Кривые 12 и 13 соответствуют двум различным значениям управляющего прямого тока, протекающего через n–i–p–i–n диодную структуру, I, мА: 12 – 0.0, 13 – 550 мА. Кривая 11 соответствует фотонному кристаллу без нарушения.

Был изготовлен фотонный кристалл, центральная диафрагма которого содержит два одинаковых параллельных отверстия с размерами a2⋅=11.5 мм и b2=1 мм, расположенные на равном расстоянии от широких стенок волновода и расстоянии h, равном 5 мм, друг от друга.

В каждом отверстии находились по две n–i–p–i–n диодные структуры 1 типа 2A505 (фиг. 5), расположенные на равном расстоянии от узких сторон отверстий и расстоянии l, равном 3.83 мм, друг от друга, при этом n-области n–i–p–i–n диодных структур гальванически соединены с длинными сторонами отверстий заземленной диафрагмы, p-области n–i–p–i–n диодных структур соединены с положительным полюсом источника постоянного напряжения 2.

Управление СВЧ сигналом осуществлялось при пропускании прямого тока через n–i–p–i–n диодные структуры типа 2A505.

Частотные зависимости коэффициентов пропускания фотонного кристалла измерялись в трехсантиметровом диапазоне длин волн с помощью векторного анализатора цепей Agilent PNA-L N5230A.

Амплитудно-частотные характеристики коэффициента прохождения ⎟D⎟2 сигнала с входа 3 Y-циркулятора 6 на второй выход 5 Y-циркулятора 6 при подключении к первому выходу 4 Y-циркулятора 6 фотонного кристалла 7 (фиг. 6), центральная диафрагма которого содержит два одинаковых параллельных отверстия и четыре n–i–p–i–n диодные структуры, расположенные по две в каждом отверстии, представлены на фиг. 7.

Кривые 16–22 соответствуют различным значениям управляющего прямого тока, протекающего через n–i–p–i–n диодные структуры, I, мА: 16 – 0.0, 17 – 0.0005, 18 – 0.092, 19 – 0.660, 20 – 3.36, 21 – 8.15, 22 – 193.5. Кривая 15 соответствует фотонному кристаллу без нарушения.

Зависимости коэффициента прохождения ⎟D⎟2 сигнала с входа с входа 3 Y-циркулятора 6 на второй выход 5 Y-циркулятора 6 при подключении к выходу 4 Y-циркулятора 6 фотонного кристалла 7 (фиг. 6), центральная диафрагма 14 которого содержит два одинаковых параллельных отверстия и четыре n–i–p–i–n диодные структуры, расположенные по две в каждом отверстии, от величины управляющего прямого тока, протекающего через n–i–p–i–n диодные структуры, на частотах примесных мод затухания колебаний фотонного кристалла f1эксп и f2эксп, ГГц: 23 – 9.22; 24 – 9.56 представлены на фиг. 8.

Таким образом, заявляемое изобретение позволяет создать фотонный кристалл с частотно независимым коэффициентом прохождения электромагнитной волны в разрешенной зоне и с электрически управляемыми характеристиками примесной моды затухания колебаний фотонного кристалла.


СВЧ фотонный кристалл
СВЧ фотонный кристалл
СВЧ фотонный кристалл
СВЧ фотонный кристалл
СВЧ фотонный кристалл
Источник поступления информации: Роспатент

Показаны записи 41-50 из 90.
19.10.2018
№218.016.9383

Композиция для получения биоразлагаемого полимерного материала и биоразлагаемый полимерный материал на её основе

Изобретение относится к получению биоразлагаемых полимерных материалов, содержащих смесь крахмала с поливиниловым спиртом, применяемых в производстве упаковочных термоформованных изделий и пленок, способных к биодеструкции под действием климатических факторов и микроорганизмов. Композиция для...
Тип: Изобретение
Номер охранного документа: 0002669865
Дата охранного документа: 16.10.2018
14.12.2018
№218.016.a6b3

Способ диагностики шизофрении

Изобретение относится к медицине, а именно к области психиатрии, и может быть использовано для диагностики шизофрении. Способ включает в себя определение временной зависимости положения зрачка A(t) при слежении за перемещающимся на экране компьютера по горизонтали по гармоническому закону B(t)...
Тип: Изобретение
Номер охранного документа: 0002674946
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a70e

Материал для изготовления многоострийного автоэмиссионного катода

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Материал для изготовления многоострийного автоэмиссионного катода...
Тип: Изобретение
Номер охранного документа: 0002674752
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7cb

Способ дистанционного измерения внутриглазного давления

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002675020
Дата охранного документа: 14.12.2018
03.02.2019
№219.016.b6b5

Способ моделирования развития мозговых геморрагий у гипертензивных мышей

Изобретение относится к области медицины, в частности к экспериментальной медицине. В качестве стрессорного фактора используют создание условий социального стресса в виде перенаселения мышей в течение не менее 4-х месяцев и при достижении гипертензивных уровней артериального давления и частоты...
Тип: Изобретение
Номер охранного документа: 0002678798
Дата охранного документа: 01.02.2019
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9c2

Газовый свч-сенсор

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор...
Тип: Изобретение
Номер охранного документа: 0002679458
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
13.03.2019
№219.016.deb3

Способ выращивания корнеплодов

Изобретение относится к сельскому хозяйству, а именно к возделыванию корнеплодов, в частности кормовой свёклы, турнепса, брюквы, и может быть использовано в агроэкологии для эффективной рекультивации сельскохозяйственных земель. Способ выращивания корнеплодов заключается в предпосевной...
Тип: Изобретение
Номер охранного документа: 0002681578
Дата охранного документа: 11.03.2019
Показаны записи 41-50 из 81.
10.05.2018
№218.016.40ce

Способ повышения октанового числа

Изобретение относится к способу получения увеличения октанового числа бензина на 2,5-3 пункта, заключающемуся в пропускании бензина через пористую основу. Способ характеризуется тем, что данная основа содержит в себе адсорбирующий материал из многослойных углеродных нанотрубок, при этом для...
Тип: Изобретение
Номер охранного документа: 0002648985
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4cdd

Способ предпосевной обработки семян

Изобретение относится к сельскохозяйственному производству. Предложен способ предпосевной обработки семян, включающий воздействие на семена электромагнитным излучением и магнитным полем. При этом воздействие осуществляют последовательно электромагнитным излучением на частоте линии спектра...
Тип: Изобретение
Номер охранного документа: 0002652185
Дата охранного документа: 25.04.2018
09.06.2018
№218.016.5e0e

Боевая часть

Изобретение относится к области вооружения, а именно к разработке боевых частей для боеприпасов (снарядов, гранат, мин) и ракет. Боевая часть состоит из корпуса, взрывателя, заряда и поражающих элементов, расположенных между корпусом и зарядом. При этом поражающие элементы изготовлены из...
Тип: Изобретение
Номер охранного документа: 0002656258
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5f69

Способ дистанционного контроля движения поверхности объекта

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля движения поверхности объекта. Осуществляют генерирование электромагнитного СВЧ-сигнала и его излучение. Принимают интерференционный сигнал, являющийся суммой падающего и отраженного...
Тип: Изобретение
Номер охранного документа: 0002656532
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6493

Способ измерения наноперемещений

Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором. Преобразуют лазерное...
Тип: Изобретение
Номер охранного документа: 0002658112
Дата охранного документа: 19.06.2018
18.07.2018
№218.016.7199

Приёмо-передающий модуль радиотехнических сигналов

Изобретение относится к радиотехнике, в частности к приемо-передающим элементам антенн, и может быть использовано в цифровых антенных решетках. Техническим результатом изобретения является расширение функциональных возможностей за счет возможности его использования в цифровых антенных решетках....
Тип: Изобретение
Номер охранного документа: 0002661334
Дата охранного документа: 16.07.2018
14.09.2018
№218.016.87d7

Частотный фильтр свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотного фильтра. Сущность изобретения заключается в том, что частотный фильтр СВЧ сигнала на магнитостатических волнах содержит магнитный элемент,...
Тип: Изобретение
Номер охранного документа: 0002666968
Дата охранного документа: 13.09.2018
14.09.2018
№218.016.87df

Нелинейный делитель мощности свч сигнала на спиновых волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного делителя мощности с нелинейным эффектом. Делитель мощности СВЧ сигнала содержит единый входной порт, первый и второй выходные порты....
Тип: Изобретение
Номер охранного документа: 0002666969
Дата охранного документа: 13.09.2018
16.10.2018
№218.016.92a9

Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние между центром зрачка и...
Тип: Изобретение
Номер охранного документа: 0002669734
Дата охранного документа: 15.10.2018
14.12.2018
№218.016.a6b3

Способ диагностики шизофрении

Изобретение относится к медицине, а именно к области психиатрии, и может быть использовано для диагностики шизофрении. Способ включает в себя определение временной зависимости положения зрачка A(t) при слежении за перемещающимся на экране компьютера по горизонтали по гармоническому закону B(t)...
Тип: Изобретение
Номер охранного документа: 0002674946
Дата охранного документа: 13.12.2018
+ добавить свой РИД