×
09.06.2018
218.016.5c4d

Результат интеллектуальной деятельности: Способ создания изгибов волноводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники. Способ формирования изгиба волновода в интегральной оптической схеме заключается в формировании в прозрачной для длин волн заданного диапазона твердотельной заготовке с по меньшей мере одной плоской гранью прямолинейных участков волновода, оси которых расположены в одной плоскости с нормалью к грани под одинаковыми углами к указанной грани, и размещении на этой грани отражающей поверхности. При этом участки волновода сформированы путем фокусировки лазерного излучения в объеме заготовки, а точка пересечения их осей расположена внутри заготовки и отстоит от указанной плоской грани на расстоянии не более чем 1/10 максимального линейного размера заготовки. Технический результат – уменьшение потерь оптических сигналов, проходящих через изгибы волноводов, которые созданы методом печати в объеме твердого прозрачного стекла. 4 з.п. ф-лы, 6 ил.

Изобретение относится к способам создания интегрально-оптических схем, которые используют для получения, обработки и передачи информации. Более конкретно в изобретении предложен способ создания изгибов интегрально-оптических волноводов, с помощью которого возможно реализовать большие углы поворота волноводов в малой области, а также осуществить интерфейс между интегральной схемой и внешними устройствами.

Изгибы волноводов являются неотъемлемой частью интегрально-оптических чипов. Важной характеристикой изгибов является их размер, определяемый радиусом изгиба. Создание изгибов с малым радиусом требует волноводов с большим контрастом показателя преломления между сердцевиной волновода и его окружением. Из существующего уровня техники известны волноводные изгибы в форме дуг окружностей и спиралей (Y.A. Vlasov, S.J. McNab, Optics Express, v. 12, No 8, p. 1622-1631 (2004)). Существует несколько основных технологий, с помощью которых создаются интегрально-оптические чипы. Известны конкретные реализации таких изгибов в интегральных схемах на основе кремния, нитрида кремния и других материалов, в которых контраст показателя преломления между сердцевиной волновода и его окружением может достигать нескольких единиц.

Предлагаемый способ ориентирован на его использование в технологиях на основе модификации показателя преломления в объеме диэлектрика, например с помощью лазерного излучения. Особенностью такой технологии является типично малый контраст преломления со значениями много меньшими единицы. По этой причине для создания изгибов с малыми потерями на базе такой технологии необходимы очень большие радиусы кривизны, что делает их изготовление непрактичным.

С целью уменьшения оптических потерь на изгибах известны способы создания волноводов с замещенным материалом внешней стенки изгиба волновода (патент JP, Н01-223403 от 06.09.1989). Недостатком такого подхода является необходимость замещения материала с изогнутым профилем, что практически можно выполнить только с использованием технологии литографии или схожих технологий. Известны способы для перенаправления излучения с помощью миниатюрных зеркал, изготовленных внутри объема оптических чипов (Е. Kleijn, М.K. Smit, X.J.M. Leitens, Journal of light wave technology, v. 31, No. 18, p. 3055-3063 (2013)). Недостатком данного технического решения является ограничение его применения в многослойной литографии, что делает невозможным его использование в создании интегральных оптических схем на основе модификации показателя преломления в объеме прозрачного твердого тела.

Наиболее близким к заявленному техническому решению является способ создания изгибов волноводов с низкими потерями, изложенный в патентах WO 2006088613 (А2) от 2006.08.24, CN 101120274 (В) от 2010.08.25, US 2006182399 (A1) от 2006.08.17, US 7760979 (В2) от 2010.07.20, WO 2006088613 (A3) от 2006.11.23, GB 2438119 (A) от 2007.11.14, GB 2438119 (B) от 2010.05.05. В этом решении предложено прерывать стык изгиба элементом, на котором выполнены условия полного внутреннего отражения. Недостатками данного технического решения являются: 1) необходимость использования многослойных технологий, состоящих в напылении слоев с различными профилями из разных материалов на всей области чипа или в физическом удалении областей чипа и их замену на другие; 2) невозможность выполнения условий полного внутреннего отражения для углов изгибов близких к 180 градусам.

Технической задачей, на решение которой направлено настоящее изобретение, является создание компактных волноводных изгибов, создаваемых технологиями модификации показателя преломления в объеме твердого прозрачного тела, с целью создания интегрально-оптических элементов и устройств на их основе.

Поставленная задача решается за счет того, что заявленный способ формирования изгиба волновода в интегральной оптической схеме, заключающийся в формировании в прозрачной для длин волн заданного диапазона твердотельной заготовке с по меньшей мере одной плоской гранью прямолинейных участков волновода, оси которых расположены в одной плоскости с нормалью к грани под одинаковыми углами к указанной грани, и размещении на этой грани отражающей поверхности, отличается тем, что участки волновода сформированы путем фокусировки лазерного излучения в объеме заготовки, а точка пересечения их осей расположена внутри заготовки и отстоит от указанной плоской грани на расстоянии не более чем 1/10 максимального линейного размера заготовки. Может быть способ, отличающийся тем, что после формирования участков волновода и до размещения отражающей поверхности указанную плоскую грань заготовки шлифуют и/или полируют. Может быть способ, отличающийся тем, что в качестве отражающей поверхности используют металлическую пленку или слоистую диэлектрическую структуру, которую наносят непосредственно на указанную плоскую грань или прикладывают к ней. Может быть способ, отличающийся тем, что используют отражающую поверхность, реализующую полное зеркальное отражение для длин волн заданного диапазона. Может быть способ, отличающийся тем, что используют отражающую поверхность, частично прозрачную для длин волн заданного диапазона.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является уменьшение потерь оптических сигналов, проходящих через изгибы волноводов, которые созданы методом печати в объеме твердого прозрачного тела.

Краткое описание чертежей

На фиг. 1 представлен чертеж волноводного изгиба в форме дуги окружности некоторого радиуса R для перенаправления сигнала на угол π-2α с α«1. Изгиб сформирован волноводом 1 и имеет два порта - 2 и 3, через которые на него поступает и выходит оптический сигнал. Изгиб - симметричный элемент, поэтому выбор входного и выходного порта определяется схемой оптического чипа. Характерная площадь, на которой расположен такой изгиб, равна 2R2. В случае слабо направляющих волноводов это, как правило, большая величина, которая может превышать размеры компактного интегрально оптического чипа.

На фиг. 2 представлен чертеж волноводного изгиба, который иллюстрирует предложенный способ изготовления изгибов с помощью переотражения от грани оптического чипа. Изгиб сформирован прямолинейными отрезками волноводов 4 с пересекающимися осями, которые задают пару портов - 5 и 6, служащих для подачи и съема оптического сигнала из изгиба. Для перенаправления излучения на грани чипа размещена отражательная поверхность 7. Из геометрических соображений очевидно, что для перенаправления на угол π-2α площадь размещения изгиба много меньше, чем в случае на фиг. 1.

Фиг. 3, 4, 5 и 6 иллюстрируют предлагаемый способ создания изгиба с малыми потерями.

На фиг. 3 изображена заготовка 8 с плоскими гранями, которая представляет собой твердое тело, оптически прозрачное для диапазона длин волн, в котором будет работать оптический чип. Для пояснения рассмотрена некоторая грань 9 заготовки. Печать волноводного изгиба в заготовке осуществляется таким образом, чтобы точка пересечения осей волноводов лежала в объеме заготовки.

На фиг. 4 изображено сечение заготовки после этапа печати волноводов. Сечение лежит в плоскости напечатанных волноводов 10 с пересекающимися осями 11 в некоторой точке 12, лежащей внутри заготовки. Сами волноводы физически могут как пересекать друг друга в этой точке, так и не доходить до точки пересечения их осей из-за прерывания (этому случаю соответствуют иллюстрации).

На фиг. 5 изображено сечение заготовки оптического чипа в плоскости напечатанных волноводов 10 после этапа шлифовки/полировки грани 9. В результате точка пересечения осей волноводов 12 лежит на полученной путем шлифовки/полировки грани 13 или в некоторой ее окрестности, определяющей оптимальность перенаправления. Нормаль 14 к поверхности грани 13 в точке, наиболее близкой к пересечению осей волноводов 12, лежит в плоскости волноводов и образует с осями волноводов одинаковые углы.

На фиг. 6 изображено сечение заготовки чипа после этапа напыления или приложения отражающей поверхности 15 к грани 13. Данный этап является завершающим для создания изгиба предложенным способом.

Осуществление изобретения

Интегрально-оптические устройства активно используются в коммуникационных оптических системах и системах обработки информации по причине своей компактности, высокой функциональности, стабильности и энергоэффективности. Интегральные оптические технологии обладают большим потенциалом для реализации сложных квантовых алгоритмов обработки и передачи информации. В основу интегральных устройств положены волноводы, располагаемые на чипе, по которым распространяются оптические сигналы. Волноводы представляют собой сердцевину, характеризуемую показателем преломления выше, чем окружающая среда. На сегодняшний день существует ряд технологий создания волноводов для интегрально-оптических устройств, каждую из которых отличает материал и подход к созданию неоднородностей показателя преломления. Например, хорошо развита на сегодня технология литографии, позволяющая создавать планарные чипы, например, на основе кремния и кварца, нитрида кремния и кварца и других.

Важной характеристикой волноводных структур является контраст показателя преломления между сердцевиной волновода и окружающей средой. При высоких значениях этой величины можно создавать изгибы волноводов с малыми потерями и, следовательно, более плотно «упаковать» функциональные элементы на интегральном чипе. Например, контраст показателей преломления в структурах на основе кремния достигает нескольких единиц, что позволяет делать волноводные изгибы с радиусами в несколько микрометров с малыми потерями.

Технологии печати волноводов в объеме прозрачного твердого тела, например сфокусированным лазерным излучением, дают возможность создавать трехмерные оптические чипы без сложных многоступенчатых технологий литографии. Однако на сегодняшний день технологии печати волноводов не дают таких высоких контрастов показателя преломления, как в случае литографических технологий удаления и послойного нанесения различных материалов. Типичные значения контрастов в волноводах, выполненных методами лазерной печати, составляют порядка 10-3-10-4, в зависимости от обрабатываемого материала и условий печати; имеются особые виды халькогенидов, в которых удалось получить контраст ~0,5. Существенным преимуществом волноводов с малым контрастом показателя преломления (называемых также слабо направляющими волноводами) является малый уровень потерь на участках без изгибов, который может быть существенно меньше потерь в волноводах, изготовленных литографическими технологиями. С другой стороны, свойство малости контраста показателя преломления делает невозможным создание изгибов с малыми радиусами кривизны из-за больших потерь в них, поэтому в них не существует прямого способа плотной «упаковки» функциональных элементов без привлечения дополнительных элементов. Вместе с тем технологии создания волноводов в объеме диэлектрика с помощью модификации показателя преломления материала чипа не позволяют внедрять инородные элементы в волноводные структуры или это является сложной задачей.

В настоящем изобретении предложено подводить волноводы к торцам чипа и наносить на них отражающее покрытие и с их помощью перенаправлять излучение из одного волновода в другой с малыми потерями. При оптимальной конфигурации такой волноводной структуры - взаимной ориентации волноводов и их ориентации относительно отражающего торца чипа - (I) возможно добиться перенаправления излучения на углы, которые не ограничены условиями полного внутреннего отражения. Помимо этого, (II) с помощью предложенного подхода можно реализовать интерфейс между интегральной схемой и внешними элементами (источники, детекторы, преобразователи и др.). Для этой цели торцы должны быть частично отражающими.

Предложенный способ создания изгибов состоит из трех этапов:

1. На начальном этапе необходима твердотельная заготовка с плоскими гранями, которая прозрачна для диапазона длин волн, в котором будет работать интегральная схема. Кроме того, при создании активных волноводных устройств, например усилителей, лазеров или преобразователей, на оптическом чипе, материал заготовки также должен обладать соответствующими активными свойствами. На фиг. 3 представлена заготовка 8 с плоской гранью 9. На первом этапе формируют волноводную структуру будущего чипа. При этом изгибы волноводов представляют собой отрезки прямолинейных волноводов, у которых оси пересекаются в некоторых точках внутри объема заготовки. Рассмотрим предложенный способ на примере одного изгиба. На фиг. 4 представлена заготовка чипа с напечатанными волноводами 10. Заметим, что физически прямолинейные волноводы необязательно пересекаются, однако оси волноводов 11, которые могут являться их продолжениями, должны пересекаться в некоторой точке внутри заготовки 12. На данном этапе грань 9 может иметь произвольную ориентацию относительно волноводов 10.

2. На втором этапе, изображенном на фиг. 5, для подвода плоскости грани к точке пересечения осей волноводов и формирования требуемой ориентации этой грани выполняют шлифовку и/или полировку изначальной грани 9. Точка пересечения 12, таким образом, лежит на новой грани 13 или в ее малой окрестности. Кроме того, нормаль 14 к грани 13 лежит в плоскости осей волноводов 11, а углы, которые она образует с осями 11, равны между собой.

Выполнение двух условий является необходимым для малых потерь на изгибе:

- положение точки пересечения 12 на малом расстоянии от плоскости 13 (это следствие согласования пространственных профилей мод между входным и выходным волноводами);

- соотношение углов между нормалью 14 и осями 11 следует из условия оптимального отражения от грани 13.

Следует отметить, что описанные условия для взаимной ориентации граней и волноводов могут быть выполнены уже на первом этапе при записи волноводов. В этом случае необходимость во втором этапе отпадает.

3. На третьем этапе, который иллюстрирует фиг. 6, на грань 13 наносят отражающее покрытие 15. Это может быть выполнено с помощью напыления металлической пленки или слоистой диэлектрической структуры. В зависимости от требуемого функционала изгиба, в предложенном способе имеется возможность реализовать интерфейс между чипом и внешним окружением. Для этой цели отражающая поверхность выполняется частично пропускающей. Более того, отражающую поверхность можно реализовать с помощью приставления отражающей поверхности к грани. В таком случае конфигурацию пропускания и связи с внешним окружением в изгибе можно изменять.


Способ создания изгибов волноводов
Способ создания изгибов волноводов
Способ создания изгибов волноводов
Способ создания изгибов волноводов
Источник поступления информации: Роспатент

Показаны записи 21-30 из 174.
25.08.2018
№218.016.7f7e

Автономный необитаемый подводный аппарат для измерения дифференциальных характеристик векторного звукового поля

Изобретение относится к гидроакустике, в частности к устройствам пеленга подводных источников шума. Автономный необитаемый подводный аппарат для измерения дифференциальных характеристик векторного звукового поля содержит носовой и кормовой звукопрозрачные обтекатели, носовой и кормовой...
Тип: Изобретение
Номер охранного документа: 0002664971
Дата охранного документа: 24.08.2018
25.08.2018
№218.016.7f9f

Подводный планер для локализации источника звука

Изобретение относится к области устройств для локализации источника звука. Подводный планер содержит крылья, рули, двигатели, аккумуляторную батарею, систему управления. Планер содержит два разнесенных детектора - носовой и кормовой. Каждый детектор прикрыт звукопрозрачным колпаком и...
Тип: Изобретение
Номер охранного документа: 0002664973
Дата охранного документа: 24.08.2018
07.09.2018
№218.016.83a8

Бронематериал фронтального слоя бронепанели

Изобретение относится к области материалов многослойных бронепанелей, использующихся для индивидуальной защиты и для защиты вооружения, военной и специальной техники. Композиционный бронематериал включает карбид бора и армирующие волокна. При этом материал дополнительно содержит полимерное...
Тип: Изобретение
Номер охранного документа: 0002666195
Дата охранного документа: 06.09.2018
07.09.2018
№218.016.83eb

Средство, его применение и способ повышения устойчивости организма млекопитающих к переохлаждению

Группа изобретений относится к созданию лекарственного средства для повышения устойчивости млекопитающих к переохлаждению. Средство содержит фармацевтическую композицию препаратов, содержащую 0,78-1,18 мас.% пропранолола, 0,015-0,024 мас.% резерпина, 0,078-0,12 мас.% ивабрадина, 0,098-0,18...
Тип: Изобретение
Номер охранного документа: 0002665963
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.83f2

Средство, включающее перфторуглеродную эмульсию (варианты), его применение и способ повышения устойчивости организма млекопитающих к переохлаждению

Группа изобретений относится к созданию лекарственного средства для повышения устойчивости млекопитающих к переохлаждению. Средство содержит фармацевтическую композицию препаратов, содержащую 0,78-1,18 мас.% пропранолола, 0,015-0,024 мас.% резерпина, 0,078-0,12 мас.% ивабрадина, 0,098-0,18...
Тип: Изобретение
Номер охранного документа: 0002665964
Дата охранного документа: 05.09.2018
13.09.2018
№218.016.8717

Способ диагностики рака легкого по анализу выдыхаемого пациентом воздуха на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы

Изобретение относится к медицине, в частности к исследованию и анализу газообразных биологических материалов, и может быть использовано для диагностики рака легкого у человека. Способ основан на анализе выдыхаемого пациентом воздуха путем анализа биоэлектрических потенциалов обонятельного...
Тип: Изобретение
Номер охранного документа: 0002666873
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.8999

Многоцелевая подводная лодка для осуществления транспортировки, установки, снятия грузов под водой

Изобретение относится к области судостроения и касается вопросов создания средств для осуществления транспортировки, установки, снятия грузов под водой, а также для осмотра, технического обслуживания, ремонта подводных сооружений. Предложена многоцелевая подводная лодка для осуществления...
Тип: Изобретение
Номер охранного документа: 0002667407
Дата охранного документа: 19.09.2018
25.09.2018
№218.016.8b27

Система релятивистской квантовой криптографии

Изобретение относится к области квантового распределения ключей, а именно релятивистских квантовых протоколов. Технический результат – организация подстройки приемного интерферометра в однопроходной схеме релятивистского квантового распределения ключей с использованием имеющихся в системе...
Тип: Изобретение
Номер охранного документа: 0002667755
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cca

Способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов и устройство для его осуществления

Изобретение относится к криоконсервации биологических объектов. Предложенный способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов предусматривает внесение исследуемых криопротекторов в среду для криоконсервации, при этом: а)...
Тип: Изобретение
Номер охранного документа: 0002668322
Дата охранного документа: 28.09.2018
03.10.2018
№218.016.8d40

Система аварийного расхолаживания

Изобретение относится к области ядерной энергетики. Система аварийного расхолаживания содержит автономный прямоточный парогенератор, водяной теплообменник-доохладитель, паровую и водяные ветки, запорную арматуру. В состав системы введены водяной теплообменник-конденсатор, соединенный паровой...
Тип: Изобретение
Номер охранного документа: 0002668235
Дата охранного документа: 27.09.2018
Показаны записи 11-11 из 11.
02.06.2023
№223.018.75b4

Способ и система для прецизионной аддитивной печати трехмерных структур (варианты)

Группа изобретений относится к области прецизионной аддитивной печати трехмерных полимерных структур и может быть применена для изготовления оптических элементов в микроскопии, высокоразрешающей томографии, спектроскопии, флуоресцентной спектрометрии. Отличительной особенностью способа является...
Тип: Изобретение
Номер охранного документа: 0002796486
Дата охранного документа: 24.05.2023
+ добавить свой РИД