×
09.06.2018
218.016.5b4f

Результат интеллектуальной деятельности: Многозонный термопреобразователь

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах. Известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии, по предложению для измерения поля высокотемпературного газового потока он снабжен дополнительными трубчатыми корпусами, каждая кабельная термопара в защитном чехле заключена в трубчатый корпус, корпуса последовательно соединены в одной плоскости в сборку, а на боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия по направлению потока газа, при этом отношение расстояния между отверстиями к диаметру трубчатого корпуса равно 3-7, а расстояние между защитным чехлом термопары и трубчатым корпусом не более 0,3 мм. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, термопреобразователь в качестве кабельных термопар содержит спаи в виде хромель-алюмелевых термоэлектродов, а трубчатые корпуса выполнены из стали 23ХН18 или ХН78Т. Технический результат - расширение высокотемпературного интервала измерений до температуры 1450°С, повышение точности измерений, увеличение срока безотказной работы свыше 2 лет при многократном использовании для измерения поля температур высокотемпературного газового потока. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах.

Наиболее близким аналогом предлагаемого изобретения по технической сущности и достигаемому результату является известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии.

/ТП 0199 (многозонные термопреобразователи) - ООО "Биакс"

http://biaksnn.ru/tp-O 199-mllogozollllye- termopreobrazovateli/ 26.01.2017 16:08:27/

Недостатком известного термопреобразователя (с кабельными термопарами типа КТХА, КТНН) является нестабильность измерения из-за их недостаточного интервала устойчивого измерения при высоких температурах. Это справедливо в случае использования известного термопреобразователя при измерении температуры газового потока, движущегося с большой скоростью в газотурбинных установках, где температура потока достигает температуры до 1400°С. Точность и достоверность измерения снижается, стойкость неохлаждаемого термопреобразователя становится незначительной, повторное использование его затруднительно.

Задача настоящего изобретения заключается в разработке неохлаждаемой гребенки термопар для измерения поля температур высокотемпературного газового потока, движущегося с большой скоростью на выходе из камеры сгорания газотурбинной установки.

Ожидаемый технический результат - расширение высокотемпературного интервала измерений, увеличение точности измерений, повышение срока службы, за счет возможности многократного использования для измерения поля температур газового потока на выходе из камеры сгорания.

Ожидаемый технический результат достигается тем, что известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии, по предложению, для измерения поля высокотемпературного газового потока, он снабжен дополнительными трубчатыми корпусами, каждая кабельная термопара в защитном чехле заключена в трубчатый корпус, корпуса последовательно соединены в одной плоскости в сборку, а на боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия по направлению потока газа, при этом отношение расстояния между отверстиями к диаметру трубчатого корпуса равно 3-7, а расстояние между защитным чехлом термопары и трубчатым корпусом не более 0,3 мм. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, термопреобразователь в качестве кабельных термопар содержит спаи в виде хромель-алюмелевых термоэлектродов, а трубчатые корпуса выполнены из стали 23ХН18 или ХН78Т.

Для повышения стойкости от воздействия высоких температур термопреобразователь снабжен дополнительными трубчатыми корпусами, которые последовательно соединены в одной плоскости в сборку (гребенку).

Термопары в защитном чехле заключены в трубчатые корпуса сборки, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии. В местах размещения спаев в трубчатых корпусах выполнены отверстия. Отверстия выполнены по направлению потока газа, преимущественно со стороны боковой поверхности сборки, что позволяет уменьшить нарушения сплошности измеряемого потока и уменьшить его влияние на достоверность измеряемой температуры. Расстояние между отверстиями устанавливают в зависимости от наружного диаметра трубчатого корпуса по установленному экспериментально отношению расстояния между отверстиями к диаметру трубчатого корпуса, которое равно 3-7. При отношении менее 3, для условий высокотемпературного потока газотурбинного двигателя, расстояние между отверстиями или спаями становится очень незначительным, что приводит к излишним измерениям и не влияет на увеличение достоверности сведений о температуре потока, а при расстоянии между отверстиями при отношении более 7 наблюдается значимое снижение достоверности сведений о температуре потока. Расстояние между защитным чехлом термопары и внутренней стенкой трубчатого корпуса не должно превышать 0,3 мм. В этом случае количество поступающего между корпусами газа практически не влияет на достоверность измерения температуры. При увеличении расстояния более 0,3 мм газ, набегающего потока, поступает между корпусами и начнет оказывать влияние на значение измеряемой температуры, а при величине расстояния более 1 мм, его влияние на результаты измерений станет неприемлемым. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, в частности запаяны или закрыты пробками. Корпуса могут быть изготовлены из стали 23ХН18 или ХН78Т, обеспечивающей достаточные жаростойкие свойства.

На приведенных чертежах показана конструкция многозонного термопреобразователя.

На фиг. 1 - схема многозонного термопреобразователя в сборе.

На фиг. 2 - узел А расположение отверстий на сборке многозонного термопреобразователя.

Многозонный термопреобразователь содержит трубчатые корпуса 1, кабельные термопары с рабочим спаем в защитном чехле 2, хомуты 3, соединяющие трубчатые корпуса в одной плоскости в сборку, кронштейн 4, фиксирующий сборку, переходную втулку 5 и удлинительные провода 6. На боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия 7 по направлению потока газа, отношение расстояния (n) между отверстиями к диаметру (d) трубчатого корпуса n/d=3-7.

По предложению, многозонный термопреобразователь, в зависимости от условий испытаний, может комплектоваться термопарами типа КТХА, КТНН, защитными трубчатыми корпусами 1 различных наружных диаметров, изготовленными из жаропрочных или жаростойких сталей, и соединительными хомутами 3. При комплектации учитываются требования по расстоянию между отверстиями и зависимость расстояния от диаметра трубчатого корпуса. Учитываются требования по величине расстояния между защитным чехлом термопары и внутренней стенкой трубчатого корпуса, которое не должно превышать 0,3 мм.

Комплектация многозонного термопреобразователя и его работа в приведенной комплектации

В комлектации использована кабельная термопара типа КТХА, которая установлена в трубчатый корпус из стали марки ХН78Т с внешним диаметром 3 мм и внутренним диаметром 2 мм, а расстояние между защитным чехлом термопары и трубчатым корпусом составляло 0,2 мм. На боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены приемные отверстия диаметром 1 мм. Трубчатые корпуса с кабельными термопарами типа КТХА с помощью хомутов из фольги ХН78Т толщиной 0,2 мм соединены со сдвигом в одной плоскости в сборку из шести корпусов. Расстояние между отверстиями (рабочими спаями) составляло n=6×3=18 мм. Для фиксирования сборки в нужном положении относительно газового потока на сборку установлен кронштейн из стали марки ХН78Т. Кабельные термопары типа КТХА с помощью переходных втулок соединены с удлинительными проводами хромель-алюмель (ХА) 0,5 мм2 в кремнеземной оплетке и показывающими приборами.

С помощью кронштейна перед началом измерения температурного поля потока газа устанавливали сборку в радиальном направлении к потоку, при этом отверстия в боковой поверхности ориентировали навстречу потоку газа. Измеряли температуру термопарами и производили ее фиксирование. Поворачивали сборку относительно оси потока и продолжали измерять и фиксировать температуру по окружности потока. Полученные данные позволяли регулировать подачу топлива для сжигания в различных участках камеры сгорания для получения одинаковой температурной структуры газового потока. Сборку использовали несколько раз. Продолжительность безотказной работы сборки составила более 16000 рабочих часов, что соответствовало II группе условий эксплуатации.

Приведенная комплектация сборки не является единственной. В рамках предложения могут быть скомплектованы и другие варианты сборок.

Предложенная конструкция сборки (гребенки) позволяет расширить высокотемпературный интервал измерений до температуры 1450°С, повысить точность измерений, увеличить срок безотказной работы свыше 2 лет при многократном использовании для измерения поля температур высокотемпературного газового потока.


Многозонный термопреобразователь
Многозонный термопреобразователь
Многозонный термопреобразователь
Источник поступления информации: Роспатент

Показаны записи 31-40 из 110.
10.08.2018
№218.016.7b36

Способ работы нагнетающего насоса маслоагрегата турбореактивного двигателя (трд), нагнетающий насос и его рабочее колесо

Группа изобретений относится к области авиадвигателестроения, а именно к нагнетающим насосам маслосистемы ТРД. Нагнетающий насос (НН) выполнен сблокированным с откачивающим насосом в составе корпуса маслоагрегата. Очищенное масло подают в шестеренно-центробежный рабочий орган НН. Рабочий орган...
Тип: Изобретение
Номер охранного документа: 0002663783
Дата охранного документа: 09.08.2018
05.09.2018
№218.016.82d3

Способ и устройство охлаждения вала авиационного газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к подводу охладителя к валу авиационного газотурбинного двигателя, и может быть использовано в транспортном машиностроении. Способ охлаждения вала авиационного ГТД с внутренней полостью заключается в том, что вал...
Тип: Изобретение
Номер охранного документа: 0002665797
Дата охранного документа: 04.09.2018
13.09.2018
№218.016.8719

Способ работы форсажного комплекса турбореактивного двигателя (трд) и форсажный комплекс, работающий этим способом (варианты), способ работы трд и трд, работающий этим способом

Группа изобретений относится к области авиадвигателестроения. В способе работы ТРД перевод форсажного комплекса в режим промежуточного и полного форсажа производят перемещением РУД САУиР из углового положения α последовательно в угловые диапазоны α и производят последовательное автоматическое...
Тип: Изобретение
Номер охранного документа: 0002666835
Дата охранного документа: 12.09.2018
03.10.2018
№218.016.8cef

Способ обнаружения резонансных колебаний ротора газотурбинного двигателя

Изобретение относится метрологии, в частности к способам для вибрационной диагностики ротора газотурбинного двигателя. Согласно способу устанавливают датчики на неподвижных частях турбомашины, запускают двигатель и равномерно увеличивают число оборотов исследуемого ротора. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002668358
Дата охранного документа: 28.09.2018
03.10.2018
№218.016.8d01

Способ установки кольца уплотнения в опоры турбины

Изобретение относится к технологиям сборки авиационных двигателей и энергетических установок, методам контроля и обеспечения сборочных параметров и особенностей технологического процесса сборки и конструкции оснастки, в частности к методам контроля параметров при сборке опоры ротора турбины....
Тип: Изобретение
Номер охранного документа: 0002668311
Дата охранного документа: 28.09.2018
03.10.2018
№218.016.8d45

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя (ТРД) относится к авиадвигателестроению. Предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты...
Тип: Изобретение
Номер охранного документа: 0002668310
Дата охранного документа: 28.09.2018
07.12.2018
№218.016.a461

Турбореактивный двигатель и способ его работы

Изобретения относятся к турбореактивному двигателю и способу его работы. Одновальный двухконтурный турбореактивный двигатель содержит компрессор, турбину, основную непрерывно-детонационную камеру сгорания с каналами подачи топлива, топливными форсунками и инициатором детонации, газодинамический...
Тип: Изобретение
Номер охранного документа: 0002674172
Дата охранного документа: 05.12.2018
07.12.2018
№218.016.a4ac

Охлаждаемая турбина двухконтурного газотурбинного двигателя

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит раздаточный коллектор с узлом для соединения с источником высокотемпературного воздуха, коллектор с узлом для соединения с источником низкотемпературного воздуха, междисковую полость, сообщенную с источником...
Тип: Изобретение
Номер охранного документа: 0002674229
Дата охранного документа: 05.12.2018
07.12.2018
№218.016.a4c6

Плоское сопло турбореактивного авиационного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции плоских сопел турбореактивных двигателей. Плоское сопло содержит последовательно установленные и шарнирно соединенные друг с другом корпус, дозвуковые створки и сверхзвуковые створки, а также внешние створки,...
Тип: Изобретение
Номер охранного документа: 0002674232
Дата охранного документа: 05.12.2018
12.12.2018
№218.016.a592

Стенд для проверки на герметичность мест заделки измерительных линий датчиков температуры

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки на герметичность мест заделки измерительных линий датчиков температуры. Сущность: стенд содержит ванну (1) с жидкостью (2), площадку (3), установленную с возможностью перемещения...
Тип: Изобретение
Номер охранного документа: 0002674412
Дата охранного документа: 07.12.2018
+ добавить свой РИД