×
10.05.2018
218.016.4fb1

Авиационная силовая установка

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Авиационная силовая установка содержит турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос. Турбокомпрессорный блок включает контур низкого давления и контур высокого давления с камерой сгорания, регулятор расхода топлива выполнен с двумя выходами, один из которых связан с камерой сгорания. Выходы для анодного и катодного газов батареи твердооксидных топливных элементов соединены газоводами с входом камеры сгорания. Тяговый вентилятор снабжен электродвигателем, электрически связанным с батареей твердооксидных топливных элементов. Авиационная силовая установка снабжена риформером, связанным с батареей твердооксидных топливных элементов с образованием электрохимического генератора. Контур высокого давления содержит заслонку и дополнительный контур, образованный внутренним вентилятором и электрохимическим генератором. Камера сгорания выполнена в виде низкоэмиссионной камеры сгорания со стабилизатором пламени, подключенным к выходному газоводу анодного газа электрохимического генератора, второй выход регулятора расхода топлива связан с входом риформера электрохимического генератора. Изобретение обеспечивает улучшение экологических показателей авиационной силовой установки на взлетном режиме и повышение ее экономичности на крейсерском режиме. 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к авиационной технике, в частности к авиационным установкам с гибридными турбореактивными двухконтурными двигателями (ТРДД), которые в дополнение к обычной камере сгорания имеют батарею твердооксидных топливных элементов (ТОТЭ).

Известен гибридный турбореактивный авиационный двигатель с расположенным вне камеры сгорания электрохимическим генератором на топливных элементах (RU 2511829, 2014). Гибридный турбореактивный авиационный двигатель содержит в своем составе турбокомпрессорный блок, топливную батарею, расположенную перед камерой сгорания. Камера сгорания связана с последовательно расположенными турбинами высокого и низкого давления. Турбина высокого давления приводит в движение компрессор высокого давления, подающий воздух в камеру сгорания и топливную батарею, а турбина низкого давления приводит в движение вентилятор, расположенный в контуре низкого давления. Помимо турбины низкого давления вентилятор контура низкого давления приводит в движение электродвигатель, питающийся постоянным электрическим током от топливной батареи. Однако предлагаемая в аналоге последовательность выбора режимов работы двигателя не обеспечивает достижение минимального удельного расхода топлива при поддержании массы конструкции двигателя на минимальном уровне.

Известна авиационная силовая установка на базе топливных элементов (RU 2492116, 2013), содержащая воздушный винт, электродвигатель, батарею ТОТЭ, компрессор и газовую турбину, установленные на одном валу, камеру дожигания, теплообменник, смеситель и выхлопное сопло. Батарея ТОТЭ имеет вход для подачи водорода, вход для подачи воздуха, а также выходы анодного и катодного газов. В качестве топлива используется водород. Теплообменник и газовая турбина снабжены системами перепуска газов для регулирования температуры воздуха, поступающего в топливную батарею, и мощности газовой турбины. Техническое решение повышает эффективность работы авиационной силовой установки на базе топливных элементов путем поддержания рабочей температуры в батарее ТОТЭ на неизменном уровне.

Недостатком данного технического решения является наличие теплообменника, расположенного перед входом в турбину, вследствие чего происходит потеря полезной энергии, что негативно сказывается на характеристиках авиационной силовой установки и ее надежности. Другим недостатком является применение водорода в качестве топлива, что ограничивает возможности авиационной силовой установки.

Наиболее близким техническим решением является гибридный ТРДД, содержащий в своем составе турбокомпрессорный блок, топливную батарею ТОТЭ и отдельно расположенный (вынесенный) тяговый вентилятор, приводимый в движение электродвигателем, который питается постоянным электрическим током от топливной батареи ТОТЭ (статья «Alternative View // Could liquified natural-gas fuel and hybrid-electric propulsion be the future of aviation?», журнал «Aviation Week & Space Technology)), June 4/11, 2012, p. 59-63). Гибридный ТРДД содержит камеру сгорания и регулятор расхода топлива, который соединен с камерой сгорания и батареей ТОТЭ. Недостатком данного технического решения является высокий уровень эмиссии вредных веществ на режиме взлета.

Техническая проблема заключается в высоком уровне эмиссии вредных веществ на режиме взлета авиационных силовых установок.

Технический результат заключается в улучшении экологических показателей авиационной силовой установки на взлетном режиме и повышении ее экономичности на крейсерском режиме.

Заявленный технический результат достигается тем, что авиационная силовая установка содержит турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос, соединенный с регулятором расхода топлива. Турбокомпрессорный блок включает контур низкого давления и контур высокого давления с камерой сгорания. Регулятор расхода топлива выполнен с двумя выходами, один из которых связан с камерой сгорания. Выходы для анодного и катодного газов батареи твердооксидных топливных элементов соединены газоводами с входом камеры сгорания. Тяговый вентилятор снабжен электродвигателем, электрически связанным с батареей твердооксидных топливных элементов.

В отличие от известного технического решения авиационная силовая установка снабжена риформером, связанным с батареей твердооксидных топливных элементов с образованием электрохимического генератора. Контур высокого давления содержит заслонку и дополнительный контур, образованный внутренним вентилятором и электрохимическим генератором. Вход риформера электрохимического генератора соединен воздуховодом с выходом внутреннего вентилятора. Выход для катодного газа дополнительно соединен газоводом с входом внутреннего вентилятора. Камера сгорания выполнена в виде низкоэмиссионной камеры сгорания со стабилизатором пламени, подключенным к выходному газоводу анодного газа электрохимического генератора. Второй выход регулятора расхода топлива связан с входом риформера электрохимического генератора. Заслонка выполнена с возможностью изменения расхода воздуха через низкоэмиссионную камеру сгорания.

В предлагаемой авиационной силовой установке электрохимический генератор (ЭХГ), образованный риформером и батареей ТОТЭ, на режиме взлета и на крейсерском режиме работает на одной и той же мощности. Недостаток тяги на взлете компенсируется за счет максимального увеличения мощности контура высокого давления турбокомпрессорного блока. Для этого в низкоэмиссионную камеру сгорания (НКС) турбокомпрессорного блока подаются дополнительное топливо и дополнительный воздух от компрессора высокого давления через заслонку и в обход ЭХГ. При взлете самолета НКС работает в режиме подавления эмиссии вредных веществ, получая дополнительное топливо, независимо от батареи ТОТЭ. Расходы воздуха и топлива, поступающие в НКС, определяются системой управления двигателя в зависимости от режима работы. При работе на взлетном режиме в НКС поступают максимальные расходы воздуха и топлива. На взлете НКС развивает максимальную тепловую мощность и при этом работает в режиме максимального подавления образования вредных веществ, образующихся при горении. Таким образом, на взлете в выхлопной струе авиационной силовой установки достигается остаточная концентрация NOx и СО менее 10 ppm.

Повышение экономичности работы авиационной силовой установки достигается на определенном (крейсерском) режиме ее работы за счет того, что все топливо через регулятор расхода топлива и весь воздух из контура высокого давления полностью подаются в электрохимический генератор. При этом заслонка контура высокого давления полностью перекрывает расход воздуха в НКС, где дожигаются только неиспользованные остатки топлива (анодные и катодные газы).

Настоящее изобретение поясняется подробным описанием конструкции авиационной силовой установки и ее работы со ссылкой на фиг. 1-4, где:

на фиг. 1 изображена схема авиационной силовой установки с ЭХГ и отдельно расположенным тяговым вентилятором;

на фиг. 2 - схема течения рабочих сред в авиационной силовой установке, где весь воздух и все топливо полностью подаются в ЭХГ;

на фиг. 3 - схема течения рабочих сред в авиационной силовой установке, где часть воздуха и топлива подаются в обход ЭХГ;

на фиг. 4 - схема течения рабочих сред в авиационной силовой установке, где часть воздуха подается в обход ЭХГ, а все топливо подается в ЭХГ.

Авиационная силовая установка содержит турбокомпрессорный блок 1 (фиг. 1), батарею 2 ТОТЭ с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор 3, топливный насос 4, соединенный с регулятором 5 расхода топлива. Турбокомпрессорный блок 1 включает контур низкого давления и контур высокого давления с НКС 6. Контур низкого давления включает компрессор 7 низкого давления и турбину 8 низкого давления, установленные на одном валу. Контур высокого давления включает компрессор 9 высокого давления и турбину 10 высокого давления, установленные на одном валу. Регулятор 5 расхода топлива выполнен с двумя выходами, один из которых связан с НКС 6. Выходы для анодного и катодного газов батареи 2 ТОТЭ соединены газоводами 11 и 12 с входом НКС 6. Тяговый вентилятор 3 снабжен электродвигателем 13, электрически связанным с батареей 2 ТОТЭ.

Авиационная силовая установка снабжена риформером 14, связанным с батареей 2 ТОТЭ с образованием ЭХГ. Контур высокого давления содержит заслонку 15 и дополнительный контур, образованный внутренним вентилятором 16 и ЭХГ. Внутренний вентилятор 16 содержит отдельную турбину 17. Вход риформера 14 ЭХГ соединен воздуховодом с выходом внутреннего вентилятора 16. Выход для катодного газа дополнительно соединен газоводом 18 с входом внутреннего вентилятора 16. НКС 6 содержит стабилизатор 19 пламени, подключенный к выходному газоводу 11 анодного газа ЭХГ. Второй выход регулятора 5 расхода топлива связан с входом риформера 14 ЭХГ. Заслонка 15 выполнена с возможностью изменения расхода воздуха через НКС 6.

Турбокомпрессорный блок 1 выполнен в виде гибридного ТРДД. ЭХГ содержит риформер 14 для получения синтез-газа, питающего топливные элементы батареи 2 ТОТЭ. Отдельно расположенный (вынесенный) тяговый вентилятор 3 приводится в движение электродвигателем 13. Электродвигатель 13 размещается в обтекателе 20, установленном в тяговом вентиляторе 3, и питается постоянным током от батареи 2 ТОТЭ. ЭХГ расположен рядом с турбокомпрессорным блоком 1 и имеет вход для подачи топлива (синтез-газ), соединенный с выходом регулятора 5 расхода топлива, вход для подачи воздуха, а также отдельные выходы для анодного и катодного газов. Батарея 2 ТОТЭ генерирует постоянный электрический ток благодаря электрохимическим реакциям, происходящим в ней, с непосредственным превращением химической энергии топлива в электрическую. Исходное углеводородное топливо перед подачей в батарею 2 ТОТЭ преобразуется в риформере 14 в синтез-газ, представляющий собой смесь окиси углерода и водорода. Генерация синтез-газа производится методом селективного окисления с использованием только атмосферного воздуха, без применения посторонних реагентов.

Атмосферный воздух подается в батарею 2 ТОТЭ с помощью внутреннего вентилятора 16. Батарея 2 ТОТЭ, риформер 14 жидкого топлива и внутренний вентилятор 16 образуют дополнительный контур, по которому циркулирует атмосферный воздух. Часть воздуха из дополнительного контура отбирается в НКС 6, а недостающий воздух поступает в контур из компрессора 9 высокого давления.

Внутренний вентилятор 16 приводится в движение отдельной турбиной 17 через свой вал. В турбокомпрессорном блоке 1 используется НКС 6 с факельной стабилизацией горения, которая для своей работы получает воздух и топливо независимо от батареи 2 ТОТЭ. Для создания факела, стабилизирующего горение в НКС 6, используются остатки синтез-газа, поступающие из батареи 2 ТОТЭ по газоводу 11 анодного газа.

При взлете самолета НКС 6 работает в режиме подавления эмиссии вредных веществ, получая дополнительное топливо, независимо от батареи 2 ТОТЭ. Часть воздуха в НКС 6 подается в обход дополнительного контура через заслонку 15. Расходы воздуха и топлива, поступающие в НКС 6, определяются системой управления двигателя в зависимости от режима работы. При работе на взлетном режиме в НКС 6 поступают максимальные расходы воздуха и топлива. При работе на крейсерском режиме воздух и топливо в НКС 6 не подаются, а НКС 6 работает в режиме диффузионного горения на остатках синтез-газа и воздуха, поступающих из топливной батареи.

Авиационная силовая установка, схема которой представлена на фиг. 1, может создавать одну и ту же тягу, работая при различных вариантах организации рабочего процесса.

Наиболее очевидный вариант заключается в том, что все топливо и весь воздух из компрессора 9 высокого давления полностью подаются в ЭХГ (фиг. 2). При этом в НКС 6 дожигаются только неиспользованные остатки топлива.

Другой возможный вариант - когда часть воздуха и топлива подаются в обход ЭХГ, с тем чтобы увеличить температуру и расход газов, поступающих на газовую турбину 10 высокого давления (фиг. 3). Возможен и третий вариант (фиг. 4), когда часть воздуха подается в обход ЭХГ, а все топливо подается только в ЭХГ.

Турбокомпрессорный блок 1 выполнен в виде гибридного ТРДД. Удельный расход топлива в гибридном ТРДД будет минимальным, если он работает по первому варианту (фиг. 2). При этом от ТРДД требуется максимальная степень двухконтурности. Но при работе по этому варианту увеличение мощности ТРДД однозначно требует увеличения массы конструкции ЭХГ.

Работа ТРДД в варианте, представленном на фиг. 3, приводит к снижению его экономичности по сравнению с первым вариантом, но при этом становится возможным увеличение мощности газотурбинной части и, следовательно, общей мощности двигателя без увеличения массы ЭХГ. Этот вариант работы ТРДД требует минимальной степени двухконтурности. При третьем варианте работы ТРДД (фиг. 4) возможно уменьшение температуры газов, поступающих на турбину 10 высокого давления, что приводит к снижению мощности двигателя и уменьшению силы тяги. В гибридном ТРДД оказывается возможным существенное уменьшение мощности двигателя без снижения его экономичности.

Особенность авиационного двигателя для перспективного самолета, имеющего высокое аэродинамическое качество, заключается в необходимости большой глубины регулирования двигателя по величине силы тяги. Так, если принять тягу двигателя на взлете за 100%, то для полета самолета на крейсерском режиме необходима сила тяги, составляющая 15-25% от силы тяги на взлете. Для снижения и посадки самолета необходимая величина силы тяги составляет менее 10% от ее взлетной величины.

Поэтому для достижения достаточной глубины регулирования гибридный ТРДД должен допускать реализацию всех трех режимов работы двигателя, представленных на фиг. 2-4. Для этого конструкция двигателя обеспечивает переменную степень двухконтурности. В представленном гибридном ТРДД (фиг. 1) это достигается за счет регулирования площади сопла 21 тягового вентилятора 3, которое работает в потоке холодного воздуха, и изменения степени сжатия в компрессоре 7 низкого давления турбокомпрессорного блока 1.

ТРДД обеспечивает взлет самолета, работая по второй схеме (фиг. 3). При этом ЭХГ работает на номинальной мощности, а створки сопла 21 тягового вентилятора 3 находятся в прикрытом положении, чтобы мощность, потребляемая тяговым вентилятором 3 на взлете, была равна номинальной мощности ЭХГ. Степень двухконтурности ТРДД на этом режиме минимальна, т.к. створки сопла 21 тягового вентилятора 3 прикрыты.

Если бы на взлетном режиме ТРДД функционировал по первой схеме (фиг. 2), то при работе на крейсерском режиме, когда требуется пониженная тяга двигателя, ЭХГ и электродвигатель 13 вынуждены были бы работать в режиме неполной мощности, что привело бы к неизбежному возрастанию общей массы двигателя, т.к. ЭХГ и электродвигатель 13 являются наиболее массивными элементами конструкции.

Поскольку значительная часть общей мощности ТРДД на взлете вырабатывается батареей 2 ТОТЭ, работающей бесшумно, то общий уровень шума, создаваемого двигателем на взлете, будет существенно меньшим, чем у традиционного ТРДД с такой же силой тяги.

При увеличении скорости высоты полета самолета, из-за снижения плотности атмосферного воздуха уменьшается расход воздуха и соответственно расход топлива, подаваемого в НКС 6, и в ЭХГ. Мощность ЭХГ понижается и поэтому тяговый вентилятор 3 продолжает работать в режиме пониженной мощности с прикрытыми створками сопла 21. При приближении самолета к крейсерскому режиму полета происходит перестройка работы ТРДД. Заслонка 15 полностью перекрывает подачу воздуха в НКС 6 в обход ЭХГ. Воздух подается только в дополнительный контур, питающий батарею 2 ТОТЭ. Подача топлива на этом режиме производится только в ЭХГ. Мощность ЭХГ возрастает и тяга, создаваемая тяговым вентилятором 3, возрастает тоже. Створки сопла 21 тягового вентилятора 3 раскрываются максимально, а двигатель переходит в режим работы, представленный на фиг. 2. При этом достигается максимальная степень двухконтурности двигателя. НКС 6 на данном режиме работает как обычная диффузионная камера сгорания, в которой догорают остатки неиспользованного в топливной батарее синтез-газа при контакте с воздухом, поступающим из батареи 2 ТОТЭ по газоводу 18 катодного газа.

В отличие от прототипа, в авиационной силовой установке предлагаемой схемы для снижения эмиссии вредных веществ на взлете используется низкоэмиссионная камера сгорания, совмещенная с топливной батареей. Остатки синтез-газа, неиспользованные в топливной батарее, используются в низкоэмиссионной камере сгорания для создания стабилизирующего факела горения. При этом на взлете достигается режим подавления образования вредных примесей и достигается минимальный уровень выброса вредных веществ, образующихся при горении. Это особенно важно при эксплуатации самолетов гражданской авиации, вынужденных взлетать с аэродромов, расположенных в густонаселенной местности.

Предлагаемая последовательность выбора режимов работы обеспечивает достижение минимального удельного расхода топлива при поддержании массы конструкции двигателя на минимальном уровне.

В настоящем техническом решении достигается значительно большая глубина регулирования, чем в обычном ТРДД с камерой сгорания традиционного типа. А поскольку работа топливной батареи, несмотря на уменьшение мощности, происходит с постоянным КПД электрической цепи, то удельный расход топлива в ней не увеличивается в отличие от обычных ТРДД на режимах пониженной мощности.

Изобретение обеспечивает:

- снижение эмиссии вредных веществ;

- повышение экономичности работы авиационной силовой установки;

- обеспечение возможности регулирования мощности авиационной силовой установки от максимума до уровня предельно низкой мощности во всем полетном диапазоне высот и чисел Маха;

- обеспечение плавного регулирования двигателя в процессе всего полета, включая режимы набора высоты, крейсерского полета, снижения и посадки.

Изобретение также может быть использовано в области наземной энергетики, морского и железнодорожного транспорта, предназначено для повышения топливной эффективности грузовых и пассажирских перевозок, улучшения экологических характеристик транспорта.

Авиационная силовая установка, содержащая турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос, соединенный с регулятором расхода топлива, причем турбокомпрессорный блок включает контур низкого давления и контур высокого давления с камерой сгорания, регулятор расхода топлива выполнен с двумя выходами, один из которых связан с камерой сгорания, выходы для анодного и катодного газов батареи твердооксидных топливных элементов соединены газоводами с входом камеры сгорания, тяговый вентилятор снабжен электродвигателем, электрически связанным с батареей твердооксидных топливных элементов, отличающаяся тем, что авиационная силовая установка снабжена риформером, связанным с батареей твердооксидных топливных элементов с образованием электрохимического генератора, контур высокого давления содержит заслонку и дополнительный контур, образованный внутренним вентилятором и электрохимическим генератором, вход риформера электрохимического генератора соединен воздуховодом с выходом внутреннего вентилятора, выход для катодного газа дополнительно соединен газоводом с входом внутреннего вентилятора, камера сгорания выполнена в виде низкоэмиссионной камеры сгорания со стабилизатором пламени, подключенным к выходному газоводу анодного газа электрохимического генератора, второй выход регулятора расхода топлива связан с входом риформера электрохимического генератора, а заслонка выполнена с возможностью изменения расхода воздуха через низкоэмиссионную камеру сгорания.
Авиационная силовая установка
Авиационная силовая установка
Источник поступления информации: Роспатент

Показаны записи 1-10 из 204.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
Показаны записи 1-10 из 29.
27.02.2013
№216.012.2b34

Смазочная композиция высокотемпературного масла для теплонапряженных газотурбинных двигателей сверхзвуковой авиации

Настоящее изобретение относится к смазочной композиции высокотемпературного масла для теплонапряженных газотурбинных двигателей сверхзвуковой авиации, включающей базовую основу - авиационный триметилолпропановый эфир на основе смеси сложных эфиров триметилолпропана и жирных монокарбоновых...
Тип: Изобретение
Номер охранного документа: 0002476587
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
10.09.2013
№216.012.6765

Авиационная силовая установка на базе топливных элементов

Изобретение относится к авиационной технике, в частности к авиационной силовой установке на базе топливных элементов. Авиационная силовая установка содержит воздушный винт, электродвигатель, батарею твердооксидных топливных элементов и устройство поддержания ее рабочей температуры. Воздушный...
Тип: Изобретение
Номер охранного документа: 0002492116
Дата охранного документа: 10.09.2013
27.08.2014
№216.012.ef08

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит цилиндрический корпус с конусообразным диффузором на входе, установленное на стенке камеры устройство зажигания топливовоздушной смеси и пристыкованную соосно к диффузору на входе горелку. Горелка включает системы подачи жидкого и газообразного...
Тип: Изобретение
Номер охранного документа: 0002527011
Дата охранного документа: 27.08.2014
10.02.2015
№216.013.26ad

Установка для получения газа из гидрата газа

Изобретение относится к устройствам для получения газообразного и сжиженного топлив из залежей гидратов. Технический результат заключается в получении свободного сжатого газа высокого давления и сжиженного газа, обеспечении работы установки за счет собственных энергетических ресурсов,...
Тип: Изобретение
Номер охранного документа: 0002541354
Дата охранного документа: 10.02.2015
20.10.2015
№216.013.82f8

Прямоточный воздушно-реактивный двигатель на твердом горючем и способ функционирования двигателя

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло....
Тип: Изобретение
Номер охранного документа: 0002565131
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.933d

Топливная композиция авиационного неэтилированного бензина

Изобретение относится к топливной композиции авиационного неэтилированного бензина, которая в качестве изомерных углеводородов содержит технический изооктан, изопентан или изомеризат С или их смесь; в качестве ароматических углеводородов содержит толуол или фракцию бензина риформинга НК-180°C...
Тип: Изобретение
Номер охранного документа: 0002569311
Дата охранного документа: 20.11.2015
25.08.2017
№217.015.b77d

Универсальная уборочная машина

Изобретение относится к машиностроению, в частности к универсальным уборочным машинам, и может быть использовано для очистки взлетно-посадочных полос, автомагистралей и любых искусственных и естественных покрытий от льда, снега, щебня, гравия и другого смета. Универсальная уборочная машина...
Тип: Изобретение
Номер охранного документа: 0002614815
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b7a6

Способ удаления льда и/или снега с искусственных и грунтовых покрытий

Изобретение относится к способам удаления льда и/или снега с искусственных и грунтовых покрытий и может быть использовано для очистки аэродромных и любых дорожных покрытий от льда, снега, щебня, гравия и другого смета. Способ заключается в том, что над очищаемой поверхностью размещают вихревую...
Тип: Изобретение
Номер охранного документа: 0002614816
Дата охранного документа: 29.03.2017
26.08.2017
№217.015.de9e

Газотурбинная установка и способ функционирования газотурбинной установки

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) содержит компрессор, камеру сгорания, турбину, потребитель энергии, магистраль топливоподачи и котел утилизатор, снабженный контурами горячего и холодного теплоносителей. Контур горячего теплоносителя выполнен в виде выпускного...
Тип: Изобретение
Номер охранного документа: 0002624690
Дата охранного документа: 05.07.2017
+ добавить свой РИД