×
10.05.2018
218.016.4cb9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Нанопорошки пористого кремния получают путем травления исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывкой полученного пористого материала в дистиллированной воде, механическим отделением от кристаллической подложки, измельчением, сушкой полученного порошка в естественных условиях, причем в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%). Технический результат заключается в получении нанопорошка пористого кремния, демонстрирующего высокоинтенсивную фотолюминесценцию (в 10-15 раз больше прототипа) при возбуждении источником с длиной волны от 337 нм и выше, при сохранении высокой производительности метода. 5 ил.

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток.

Известен способ получения нанокристаллического кремния, обладающего яркой устойчивой фотолюминесценцией (РФ 2411613, МПК H01L 33/02, B82B 3/00, опубл. 10.02.2011), согласно которому проводят реакцию спекания при температуре ~800 К тонкоизмельченного силицида магния и аэросила с последующим растворением и вымыванием оксида магния в подкисленном водном растворе, с последующей очисткой порошка нанокристаллического кремния осаждением этанолом и растворением в трихлорметане.

Изобретение обеспечивает получение порошка нанокристаллического кремния с устойчивой яркой фотолюминесценцией, максимум интенсивности которой возможно сдвигать в области от 750 нм до 550 нм, а также позволяет получать частицы нанокристаллического кремния, сохраняющие люминесцентные свойства при высоких до ~650 К температурах в массовых количествах без использования дорогих и легковоспламеняющихся веществ.

К недостаткам относится энергозатратность способа (высокие температуры получения), использование нагретой концентрированной плавиковой кислоты в процессе постобработки, которая является высокотоксичным реагентом.

Также известен и способ получения фотолюминесцирующего пористого кремния (РФ 2316077, МПК H01L 33/00, опубл. 27.01.2008), согласно которому пористый кремний получают из монокристаллического кремния, подвергая его электролитическому травлению в двухэлектродной ячейке с использованием электролита, содержащего воду, этанол и плавиковую кислоту. Травление выполняют в два этапа. На первом этапе травление исходного кремния выполняют при постоянном токе при приложении к кремниевой пластине положительного потенциала. На втором этапе травления изменяют полярность напряжения, прикладываемого к ячейке травления, без изменения его величины. При этом к кремниевой пластине прикладывают отрицательный потенциал и травят материал в течение 10-60 мин.

Недостатком данного способа является относительно быстрая деградация люминесцентных свойств материала вследствие постепенного окисления поверхности наночастиц пористого кремния при образовании устойчивых группировок кремний-кислород (Si-O). Такие группировки сначала образуются на поверхности наночастицы и затем мигрируют в несколько первых приповерхностных слоев, что приводит к полному затуханию люминесценции. Производительность данного способа получения по сравнению с предлагаемым способом получения крайне низка. Кроме того, полученные наночастицы пористого кремния не удается перевести в коллоидный раствор, что затрудняет их дальнейшее использование, например, в качестве люминесцирующих оптических меток.

Известен также способ получения порошков пористого кремния (патент РФ 2572128, МПК C01B 33/021, B82B 3/00, опубл. 27.12.2015), выбранный за прототип, включающий анодное электрохимическое травление в электролите исходного монокристаллического кремния в ячейке электрохимического травления, отличающийся тем, что травление производят в ячейке электрохимического анодного травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20 об. % 30%-ной перекиси водорода. Достоинством порошков пористого кремния, полученных по данной методике, является достаточно высокая стабильность их физико-химических свойств при хранении в естественных условиях.

Однако при этом существенным недостатком таких образцов является ограниченный диапазон длин волн источников возбуждения фотолюминесценции, которая появляется лишь при использовании источника с длиной волны, лежащей в видимом диапазоне от 500 нм и выше. Это накладывает существенное ограничение на применимость таких порошков пористого кремния в тех областях медицинской диагностики, где в качестве источника возбуждения фотолюминесценции используется ультрафиолетовое излучение.

Задача заключается в устранении недостатков аналога и прототипа.

Технический результат заключается в получении нанопорошка пористого кремния, демонстрирующего высокоинтенсивную фотолюминесценцию при возбуждении источником с длиной волны от 337 нм и выше при сохранении высокой производительности метода.

Технический результат достигается тем, что в способе получения нанопорошков пористого кремния, включающем травление исходного монокристаллического кремния в ячейке электрохимического анодного травления особой конфигурации с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, согласно изобретению в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).

Использование такого раствора электрохимического травления приводит к изменению состава поверхности порошков пористого кремния по сравнению с прототипом и ведет к улучшению фотолюминесцентных свойств материала.

На фиг. 1 приведена фотолюминесценция нанопорошка пористого кремния (1), прототипа (2). Длина волны возбуждающего излучения 337 нм.

На фиг. 2 (а) приведена фотолюминесценция нанопорошка пористого кремния, полученного по новой технологии, на фиг. 2 (b) - полученного по технологии прототипа. Длина волны возбуждающего излучения 532 нм. Фиг. 1 и 2 демонстрируют, что полученные по указанной методике нанопорошки пористого кремния имеют более высокую интенсивность фотолюминесценцию по сравнению с прототипом.

На фиг. 3 приведены ИК-спектры пропускания нанопорошка пористого кремния, полученного по технологии прототипа (1), нанопорошка пористого кремния по новой технологии (2), демонстрирующие существенные различия в составе нанопорошков пористого кремния.

Предлагаемый способ проиллюстрирован чертежами, где на фиг. 4 изображена схема ячейки электрохимического травления, а на фиг. 5 показано изображение порошка, полученное с помощью просвечивающего электронного микроскопа, и электронограмма порошка.

Способ получения порошков пористого кремния осуществляют следующим образом.

Для реализации способа используется оригинальная ячейка электрохимического анодного травления (фиг. 4), состоящая из фторопластовой ванны (1), в которой находится раствор электролита (2), U-образного контрэлектрода из нержавеющей стали (3), который в процессе электрохимического травления является катодом, и исходной пластины кристаллического кремния (4), которая в процессе электрохимического травления является анодом и на которой получается слой пористого кремния, а также системы контроля и установки тока (5), состоящей из источника постоянного тока со встроенным мультиметром.

Порошок получается анодным электрохимическим травлением монокристаллического кремния n-типа проводимости, легированного фосфором, с удельным сопротивлением от 0.1 Ом⋅см. до 1.0 Ом⋅см.

Пластина прямоугольной формы размером 2 см×1 см помещается в раствор электролита следующего состава: 2 об. части концентрированной плавиковой кислоты + 2 об. части изопропилового спирта + 1 об. часть перекиси водорода (30%). Малое удельное сопротивление исходной кремниевой пластины обеспечивает равномерное распределение анодного потенциала по всей площади пластины, погруженной в раствор электролита при латеральном расположении электрода над поверхностью электролита.

Таким образом, травление производят в ячейке электрохимического анодного травления с контрэлектродом U-образной формы из нержавеющей стали, с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).

Это позволяет избежать проблем, характерных для стандартного расположения кремниевой пластины в донной части кюветы, связанных с уплотнением пластины кремния, во избежание протечек электролита, содержащего агрессивную плавиковую кислоту. Травление проводится в режиме постоянного тока при плотности 15-20 мА/см2. Время травления можно варьировать от 10 до 60 мин, что позволяет изменять толщину пористого слоя в пределах от 10 до 80 мкм.

При увеличении времени травления свыше 60 минут резко падает плотность тока через пластину, и эффективность травления существенно снижается. После завершения процесса травления пластина со слоем пористого кремния, образовавшегося с двух сторон пластины, промывается в дистиллированной воде и в изопропиловом спирте, затем пористый слой механически отделяется от пластины с помощью скребка и получившийся порошок помещается в ультразвуковую ванну, заполненную изопропиловым спиртом, в которой производится дробление частиц порошка до размера 5-50 нм в течение 20 минут. На фиг. 5 приведены изображение порошка пористого кремния, полученное методом просвечивающей электронной микроскопии, и его электронограмма.

После этого частицы порошка извлекаются из спирта выпариванием и высушиваются на воздухе в естественных условиях. За один сеанс удается получить от 10 до 30 мг порошка. Полученный порошок контролировали методом просвечивающей электронной микроскопии и дифракции электронов. Наличие достаточно четких колец на электронограммах подтверждает, что кремний в частицах находится в кристаллическом состоянии. Порошок нанопористого кремния обладает яркой фотолюминесценцией с относительно широкой полосой (~300 нм) и максимумом фотолюминесценции в области 650-700 нм. При этом образец люминесцирует при возбуждении источником из ультрафиолетового и видимого диапазонов с длиной волны от 337 нм и выше.

Способ получения нанопорошков пористого кремния, включающий травление исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, отличающийся тем, что в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 86.
26.02.2019
№219.016.c826

Способ создания наноразмерных диэлектрических плёнок на поверхности inp с использованием оксида и фосфата марганца

Использование: для формирования наноразмерных диэлектрических пленок. Сущность изобретения заключается в том, что способ создания наноразмерных диэлектрических пленок на поверхности InP включает предварительную обработку полированных пластин InP травителем HSO:HOHO=2:1:1 в течение 10-12 мин,...
Тип: Изобретение
Номер охранного документа: 0002680668
Дата охранного документа: 25.02.2019
02.03.2019
№219.016.d1f3

Способ определения солей фитиновой кислоты в семенах растений

Изобретение относится к аналитической химии, предназначено для определения органического соединения фитина в семенах растений. Способ определения солей фитиновой кислоты в семенах растений включает экстракцию фитина из сырья соляной кислотой, проведение дополнительной очистки солянокислой...
Тип: Изобретение
Номер охранного документа: 0002680833
Дата охранного документа: 28.02.2019
08.03.2019
№219.016.d419

Способ отбора материнских растений picea pungens engelm., продуцирующих семенное потомство с разным уровнем стабильности генетического материала и лучшими морфометрическими показателями

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора материнских растений Picea pungens Engelm., продуцирующих семенное потомство с разным уровнем стабильности генетического материала, включает сбор и проращивание семян фенотипически здоровых материнских...
Тип: Изобретение
Номер охранного документа: 0002681105
Дата охранного документа: 04.03.2019
16.03.2019
№219.016.e1bc

Способ идентификации осмотолерантных дрожжей zygosaccharomyces rouxii на основе пцр в реальном времени

Изобретение относится к биотехнологии и может быть использовано в пищевой промышленности при идентификации осмотолерантных дрожжей Zygosaccharomyces rouxii. Способ включает предварительное обогащение дрожжей, осаждение их центрифугированием, выделение ДНК с проведением ПЦР в реальном времени,...
Тип: Изобретение
Номер охранного документа: 0002682041
Дата охранного документа: 14.03.2019
04.04.2019
№219.016.fb1c

Способ количественного определения производных 5-нитроимидазола (группы нидазолов)

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств, и может быть использовано при количественном определении производных 5-нитроимидазола (группы нидазолов) в субстанциях. Способ количественного определения производных 5-нитроимидазола...
Тип: Изобретение
Номер охранного документа: 0002683783
Дата охранного документа: 02.04.2019
06.04.2019
№219.016.fdba

Способ количественного определения производных пиперидина (группы бутирофенонов)

Изобретение относится к фармацевтическому анализу и может быть использовано для количественного определения производных пиперидина (группы бутирофенонов), а именно галоперидола, галоперидола деканоата, трифлуперидола, диклонина, эбастина, флуанизина, толперизона, дроперидола, бенперидола и...
Тип: Изобретение
Номер охранного документа: 0002684101
Дата охранного документа: 04.04.2019
31.05.2019
№219.017.708c

Ингибиторы коррозии меди и медьсодержащих сплавов на основе 5-алкилсульфонил-3-амино-1,2,4-триазолов

Изобретение относится к технике защиты металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов. Ингибитор коррозии меди и ее сплавов содержит гетероциклическое органическое соединение класса азолов, при этом в...
Тип: Изобретение
Номер охранного документа: 0002689831
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.7209

Ингибиторы коррозии меди и медьсодержащих сплавов на основе 5-алкилсульфинил-3-амино-1,2,4-триазолов

Изобретение относится к защите металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов. Ингибитор коррозии меди и ее сплавов содержит гетероциклическое органическое соединение класса азолов, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002690124
Дата охранного документа: 30.05.2019
13.06.2019
№219.017.817d

Способ количественного определения лекарственных средств группы вастатинов

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств. Способ количественного определения лекарственных средств группы вастатинов заключается в растворении анализируемой пробы при комнатной температуре и перемешивании до полного...
Тип: Изобретение
Номер охранного документа: 0002691066
Дата охранного документа: 10.06.2019
14.06.2019
№219.017.82c3

Способ использования соединений 6-гидрокси-2,2,4-триметил-1,2-дигидрохинолина, его производных и их гидрированных аналогов в качестве стимуляторов роста для видов рода rhododendron l.

Изобретение относится к сельскому хозяйству. Для стимуляции роста растений видов Rhododendron ledebourii и Rhododendron smirnovii используют одно из соединений, выбранных из группы: 6-гидрокси-2,2,4-триметил-1,2,3,4-тетрагидрохинолина в концентрации 0,05-0,1%;...
Тип: Изобретение
Номер охранного документа: 0002691377
Дата охранного документа: 11.06.2019
Показаны записи 1-5 из 5.
27.12.2015
№216.013.9e32

Способ получения порошков пористого кремния

Изобретение относится к области нанотехнологий и наноматериалов и может быть использовано в стоматологии и биомедицине. Сущность способа заключается в том, что получение наноразмерного порошка кремния обеспечивают травлением монокристаллического кремния в ячейке электрохимического травления с...
Тип: Изобретение
Номер охранного документа: 0002572128
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e38

Способ получения порошков пористого кремния

Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от...
Тип: Изобретение
Номер охранного документа: 0002572134
Дата охранного документа: 27.12.2015
20.01.2018
№218.016.129e

Способ получения нанопрофилированной ультратонкой пленки alo на поверхности пористого кремния

Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку AlO наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002634326
Дата охранного документа: 25.10.2017
18.05.2019
№219.017.5b74

Оптоволоконное устройство для регистрации флуоресценции

Изобретение относится к устройствам медицинской техники и может быть использовано для диагностики спектров флуоресценции локальных внутренних и поверхностных областей различных биологических сред. Устройство содержит призму для разделения пучка стимулирующего флуоресценцию излучения,...
Тип: Изобретение
Номер охранного документа: 0002464549
Дата охранного документа: 20.10.2012
29.05.2020
№220.018.2183

Способ получения нанопорошков пористого кремния

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4...
Тип: Изобретение
Номер охранного документа: 0002722098
Дата охранного документа: 26.05.2020
+ добавить свой РИД