×
10.05.2018
218.016.486e

СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения сложных эфиров полиглицерина и жирных кислот растительных масел (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового), которые проявляют свойства эмульгаторов и могут найти применение в пищевой и косметической продукции. Способ получения эфиров полиглицерина и жирных кислот растительных масел характеризуется тем, что осуществляют взаимодействие полиглицерина со средней степенью полимеризации равной 5 (значение гидроксильного числа равно 1169±50 мг КОН/г, показатель преломления 1,4890-1,4905) и смеси метиловых эфиров жирных кислот растительных масел формулы RCOOCH, где R - остатки жирных кислот растительных масел (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового), содержащие от 6 до 22 атомов углерода и до 3 двойных связей, при мольном соотношении реагентов полиглицерин:метиловые эфиры жирных кислот (МЭЖК) = 1:1; 1:2; 1:3,5; 1:7, выдерживанием смеси полиглицерина и МЭЖК без растворителя при перемешивании в вакууме 300 мбар при температуре 150°С в течение 2 часов, последующим добавлением катализатора - метилата натрия в количестве 0,4-0,6% от общей массы загрузки и выдерживанием реакционной массы при перемешивании и при температуре 230°С в вакууме 70 мбар в течение 6-8 часов с удалением выделяющегося метанола. Технический результат заключается в получении сложных эфиров полиглицерина и жирных кислот растительных масел простым и технологичным способом без растворителя. 1 табл., 12 ил., 20 пр.
Реферат Свернуть Развернуть

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения сложных эфиров полиглицерина и жирных кислот растительных масел (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового), которые проявляют свойства эмульгаторов и могут найти применение в пищевой и косметической продукции.

На основе эфиров жирных кислот получают различные классы поверхностно-активных веществ, используемых во многих отраслях промышленности в качестве эффективных эмульгаторов, загустителей, пластификаторов и структурообразователей.

Сложные эфиры полиглицерина широко используются в пищевой промышленности в качестве аэраторов, структурных модификаторов, кондиционеров для теста, антивспенивателей, антиразбрызгивателей и в непищевой отрасли: в фармацевтической промышленности (мази, кремы, свечи); в косметической продукции в (кремы, лосьоны, краски для волос); в текстильной промышленности и т.д. [RU 2244427 (2005 г.); Saitou K. [et al] J. Am. Oil. Chem. Soc. 2014 r. V. 91. P. 1087-1089; Corma A., Iborra S., Velty A. Chem. Rev. 2007 г. V. 107: P. 2411-2502]. Такие эфиры могут быть получены непосредственным взаимодействием полиола и жирной кислоты в присутствии кислотных [ЕР 0582246 (1994 г.), JPH 0578279 (1993 г.), US 5424469 (1995 г.)] или основных катализаторов [ЕР 0758641 (1997 г.), JPH 08217725 (1996 г.)].

Известен способ получения преимущественно линейных эфиров полиглицерина и жирных кислот, обладающих улучшенными качественными характеристиками, основанный на проведении реакции полимеризации глицерина и последующей этерификации в присутствии соединений кальция, в частности - гидроксида кальция [WO 0236534 (2002 г.)].

Способы получения сложных эфиров полиглицерина и жирных кислот из триглицеридов включают процесс переэтерификации соответствующих растительных масел полиглицерином при температуре от 200°С до 270°С в присутствии основного катализатора в инертной атмосфере при пониженном давлении [ЕР 0070080 (1983 г.), CN 104531365 (2015 г.)]. К недостаткам данных методов можно отнести использование только пальмового или гидрогенизированного масел.

Способ, описанный в патенте [CN 102559390 (2013)], позволяет получать эфиры полиглицерина на основе камфорного масла, однако в данном случае необходимо проведение предварительной стадии омыления триглицеридов до жирных кислот, что усложняет технологический процесс. Особенностью заявленного метода является использование твердофазного катализатора на основе оксида алюминия.

Способ получения эфиров полиглицерина, обладающих улучшенными поверхностно-активными свойствами раскрыт в патенте [CN 105753660 (2016)]. Предлагаемое решение основано на взаимодействии моно- или диглицеридов с глицидоловым эфиром при 110-180°С в инертной атмосфере с использованием твердофазного катализатора и последующим удалением избытка глицидола. К недостаткам данного способа можно отнести использование дорогостоящих эпоксидированных производных.

Также известен наиболее близкий по решаемой задаче способ получения эфиров полиглицерина и жирных кислот, обладающих эмульгирующими свойствами [FR 2972191 (2012 г.)], взаимодействием диглицерина и метиловых эфиров жирных кислот рапсового масла, который выбран в качестве прототипа. Способ основан на переэтерификации метиловых эфиров жирных кислот рапсового масла диглицерином в присутствии гидроксидов натрия или калия в качестве катализатора. К недостаткам данного метода можно отнести длительность проведения процесса, а также ограниченный спектр получаемых эфиров (моно- и диэфиры диглицерина жирных кислот рапсового масла).

Задачей настоящего изобретения является разработка способа получения эфиров полиглицерина со средней степенью полимеризации равной 5 и жирных кислот растительных масел формулы I, представленной на фигуре 1, позволяющего осуществить синтез целевых продуктов из метиловых эфиров жирных кислот природного происхождения (в том числе жирных кислот подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового масел) и полиглицерина с различной степенью этерификации и широким спектром значений гидрофильно-липофильного баланса (ГЛБ).

Технический результат заключается в получении сложных эфиров полиглицерина и жирных кислот растительных масел простым и технологичным способом из полиглицерина со средней степенью полимеризации равной 5 и смеси метиловых эфиров жирных кислот растительных масел при нагревании (температура реакции 150-230°С) без растворителя в вакууме 300-70 мбар с добавлением метилата натрия в качестве катализатора.

Технический результат достигается взаимодействием полиглицерина со средней степенью полимеризации, равной 5 (значение гидроксильного числа равно 1169±50 мг КОН/г, показатель преломления 1,4890-1,4905), и смеси метиловых эфиров жирных кислот растительных масел формулы RCOOCH3, где R - остатки жирных кислот растительных масел (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового), содержащие от 6 до 22 атомов углерода и до 3 двойных связей, при мольном соотношении реагентов полиглицерин : метиловые эфиры жирных кислот (МЭЖК) = 1:1; 1:2; 1:3,5; 1:7, выдерживанием смеси полиглицерина и МЭЖК без растворителя при перемешивании в вакууме 300 мбар при температуре 150°С в течение 2 часов, последующим добавлением катализатора - метилата натрия в количестве 0,4-0,6% от общей массы загрузки и выдерживанием реакционной массы при перемешивании и при температуре 230°С в вакууме 70 мбар в течение 6-8 часов с удалением выделяющегося метанола.

Технический результат подтверждают проведенные исследования с выявлением высокого эмульгирующего действия полученных эфиров полиглицерина и жирных кислот с различной степенью этерификации и широким спектром значений ГЛБ.

Изобретение подтверждается проиллюстрированными чертежами, схемами, графиками, где:

на фиг. 1 представлена структурная формула эфиров полиглицерина и жирных кислот растительных масел с различной степенью этерификации,

на фиг. 2 приведена таблица результатов анализа физико-химических свойств эфиров полиглицерина и жирных кислот растительных масел с различной степенью этерификации,

на фиг. 3 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот подсолнечного масла, полученных при соотношении масло : вода, равном 4:1,

на фиг. 4 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот подсолнечного масла, полученных при соотношении масло : вода, равном 1:1,

на фиг. 5 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот соевого масла, полученных при соотношении масло : вода равном 4:1.

на фиг. 6 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот соевого масла, полученных при соотношении масло : вода, равном 1:1,

на фиг. 7 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот пальмового масла, полученных при соотношении масло : вода, равном 4:1,

на фиг. 8 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот пальмового масла, полученных при соотношении масло : вода, равном 1:1,

на фиг. 9 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот гидрогенизированного пальмового масла, полученных при соотношении масло : вода, равном 4:1,

на фиг. 10 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот гидрогенизированного пальмового масла, полученных при соотношении масло : вода, равном 1:1,

на фиг. 11 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот кокосового масла, полученных при соотношении масло : вода, равном 4:1,

на фиг. 12 представлены изображения эмульсий моно- (а), ди- (b), три- и тетра- (с) и гексаэфиров (d) полиглицерина и жирных кислот кокосового масла, полученных при соотношении масло : вода, равном 1:1.

Способ получения эфиров полиглицерина и жирных кислот растительных масел осуществляют следующим образом.

Синтез метиловых эфиров жирных кислот растительного (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового) масла осуществляют путем взаимодействия соответствующих триглицеридов с двукратным избытком метанола при температуре 80°С в течение 1-2-х часов с использованием щелочного катализа.

Синтез полиглицерина осуществляют путем полимеризации глицерина в инертной атмосфере при перемешивании в вакууме 0,6 мбар при температуре 240°С в присутствии гидроксида калия в качестве катализатора до достижения значения показателя преломления 1,4890-1,4905 и гидроксильного числа 1169±50 мг КОН/г.

Синтез эфиров полиглицерина и жирных кислот растительных масел осуществляют выдерживанием полиглицерина со средней степенью полимеризации, равной 5, и смеси метиловых эфиров жирных кислот растительных масел (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового) при мольном соотношении реагентов полиглицерин : МЭЖК = 1:1; 1:2; 1:3,5; 1:7 без растворителя при перемешивании в вакууме 300 мбар при температуре 150°С в течение 2 часов, последующим добавлением катализатора - метилата натрия в количестве 0,4-0,6% от общей массы загрузки и выдерживанием реакционной массы при перемешивании и при температуре 230°С в вакууме 70 мбар в течение 6-8 часов с удалением выделяющегося метанола. Процесс проводят по следующей схеме:

Ниже представлены конкретные примеры осуществления предлагаемого изобретения.

ПРИМЕР 1.

Синтез эфиров полиглицерина и жирных кислот подсолнечного масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:1)

Смесь 40,6 г (0,1 моль) полиглицерина и 31 г (0,1 моль) метиловых эфиров жирных кислот (МЭЖК) подсолнечного масла нагревают до 150°С при перемешивании в вакууме 300 мбар и выдерживают в данных условиях в течение 2-х часов. Затем добавляют 0,4 г (0,4-0,6% от массы полиглицерина и МЭЖК) метилата натрия. Смесь нагревают до 230°С при перемешивании в вакууме 70 мбар и выдерживают в данных условиях в течение 6 часов.

Для полученных эфиров определяют значения кислотного числа по ГОСТ Р 52110-2003), эфирного числа по ГОСТ 5478-90, числа омыления по ГОСТ 5478-90, рН по ГОСТ 22567.5-93, а также эмульгирующей способности.

Оценку эмульгирующей способности проводят визуально по времени самопроизвольного расслоения (разрушения) столба эмульсии в высоком сосуде после проведения эмульгирования [Gad El-Karim IA, Amine MS, Mahmoud AA, Gouda AS (2014) Fatty acids in heterocyclic synthesis. Part XIV: Synthesis of surface active agents from some novel class of oxadiazole, thiadiazole and triazole derivatives having microbiological activities. J Surf Deterg 17: 509-523; Jean-Marc C, Catherine BH, Marie-Georgette N (1988) Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J Agric Food Chem 36: 883-892]. Объем отделенной дисперсной фазы фиксируется через равные промежутки времени. За меру устойчивости эмульсии принимают «полупериод жизни» - время, в течение которого отделяется 50% дисперсной фазы.

Жировой фазой служит жидкое растительное масло: подсолнечное рафинированное дезодорированное, водной фазой - дистиллированная вода. В 96 мл масла растворяют 1.2 г соответствующего эмульгатора при температуре 60°С и перемешивании со скоростью 700 оборотов в минуту, затем добавляют 24 мл воды и выдерживают в течение 15 мин для получения эмульсии при соотношении масло: вода = 4:1. В 60 мл масла растворяют 1.2 г соответствующего эмульгатора при температуре 60°С и перемешивании со скоростью 700 оборотов в минуту, затем добавляют 60 мл воды и выдерживают в течение 15 мин для получения эмульсии при соотношении масло : вода = 1:1. В 24 мл масла растворяют 1.2 г соответствующего эмульгатора при температуре 60°С и перемешивании со скоростью 700 оборотов в минуту, затем добавляют 96 мл воды и выдерживают в течение 15 мин для получения эмульсии при соотношении масло : вода = 1:4.

К 1 мл полученной эмульсии добавляют небольшое количество нейтрального жирорастворимого красителя 1-(фенилазо)-нафтола-2 и определяли тип эмульсии при помощи микроскопа при 100-кратном увеличении.

Расчет гидрофильно-липофильного баланса (ГЛБ) осуществляют по Гриффину [Griffin W (1954) Calculation of HLB values of non-ionic surfactants J Soc Cosmet Chem 5: 249-256]. Изображения, представленные на фиг. 2-11, показывают, что эфиры полиглицерина образуют разные типы эмульсий в зависимости от значений ГЛБ и соотношения масло : вода.

ПРИМЕР 2.

Синтез эфиров полиглицерина и жирных кислот подсолнечного масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:2) проводят согласно способу, описанному в примере 1, добавляя 62 г (0,2 моль) МЭЖК подсолнечного масла.

ПРИМЕР 3.

Синтез эфиров полиглицерина и жирных кислот подсолнечного масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:3,5) проводят согласно способу, описанному в примере 1, добавляя 108,5 г (0,35 моль) МЭЖК подсолнечного масла и 0,8 г метилата натрия.

ПРИМЕР 4.

Синтез эфиров полиглицерина и жирных кислот подсолнечного масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:7) проводят согласно способу, описанному в примере 1, добавляя 217 г (0,7 моль) МЭЖК подсолнечного масла и 1,5 г метилата натрия.

ПРИМЕР 5.

Синтез эфиров полиглицерина и жирных кислот соевого масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:1) проводят согласно способу, описанному в примере 1, где R1 - углеводородные фрагменты жирных кислот (С6-С18) соевого масла.

ПРИМЕР 6.

Синтез эфиров полиглицерина и жирных кислот соевого масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:2) проводят согласно способу, описанному в примере 2, где R1 - углеводородные фрагменты жирных кислот (С6-С18) соевого масла.

ПРИМЕР 7.

Синтез эфиров полиглицерина и жирных кислот соевого масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:3,5) проводят согласно способу, описанному в примере 3, где R1 - углеводородные фрагменты жирных кислот (С6-С18) соевого масла.

ПРИМЕР 8.

Синтез эфиров полиглицерина и жирных кислот соевого масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:7) проводят согласно способу, описанному в примере 4, где R1 - углеводородные фрагменты жирных кислот (С6-С18) соевого масла.

ПРИМЕР 9.

Синтез эфиров полиглицерина и жирных кислот пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:1) проводят согласно способу, описанному в примере 1, где R1 - углеводородные фрагменты жирных кислот (С6-С18) пальмового масла.

ПРИМЕР 10.

Синтез эфиров полиглицерина и жирных кислот пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:2) проводят согласно способу, описанному в примере 2, где R1 - углеводородные фрагменты жирных кислот (С6-С18) пальмового масла.

ПРИМЕР 11.

Синтез эфиров полиглицерина и жирных кислот пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:3,5) проводят согласно способу, описанному в примере 3, где R1 - углеводородные фрагменты жирных кислот (С6-С18) пальмового масла.

ПРИМЕР 12.

Синтез эфиров полиглицерина и жирных кислот пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:7) проводят согласно способу, описанному в примере 4, где R1 - углеводородные фрагменты жирных кислот (С6-С18) пальмового масла.

ПРИМЕР 13.

Синтез эфиров полиглицерина и жирных кислот гидрогенизированного пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:1) проводят согласно способу, описанному в примере 1, где R1 - углеводородные фрагменты жирных кислот (С6-С18) гидрогенизированного пальмового масла.

ПРИМЕР 14.

Синтез эфиров полиглицерина и жирных кислот гидрогенизированного пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:2) проводят согласно способу, описанному в примере 2, где R1 - углеводородные фрагменты жирных кислот (С6-С18) гидрогенизированного пальмового масла.

ПРИМЕР 15.

Синтез эфиров полиглицерина и жирных кислот гидрогенизированного пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:3,5) проводят согласно способу, описанному в примере 3, где R1 - углеводородные фрагменты жирных кислот (С6-С18) гидрогенизированного пальмового масла.

ПРИМЕР 16.

Синтез эфиров полиглицерина и жирных кислот гидрогенизированного пальмового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:7) проводят согласно способу, описанному в примере 4, где R1 - углеводородные фрагменты жирных кислот (С6-С18) гидрогенизированного пальмового масла.

ПРИМЕР 17.

Синтез эфиров полиглицерина и жирных кислот кокосового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:1) проводят согласно способу, описанному в примере 1, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

ПРИМЕР 18.

Синтез эфиров полиглицерина и жирных кислот кокосового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:2) проводят согласно способу, описанному в примере 2, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

ПРИМЕР 19.

Синтез эфиров полиглицерина и жирных кислот кокосового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:3,5) проводят согласно способу, описанному в примере 3, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

ПРИМЕР 20.

Синтез эфиров полиглицерина и жирных кислот кокосового масла (соотношение полиглицерин : метиловые эфиры жирных кислот = 1:7) проводят согласно способу, описанному в примере 4, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

Способ получения эфиров полиглицерина и жирных кислот растительных масел, характеризующийся тем, что осуществляют взаимодействие полиглицерина со средней степенью полимеризации, равной 5 (значение гидроксильного числа равно 1169±50 мг КОН/г, показатель преломления 1,4890-1,4905), и смеси метиловых эфиров жирных кислот растительных масел формулы RCOOCH, где R - остатки жирных кислот растительных масел (подсолнечного, соевого, пальмового, гидрогенизированного пальмового и кокосового), содержащие от 6 до 22 атомов углерода и до 3 двойных связей, при мольном соотношении реагентов полиглицерин:метиловые эфиры жирных кислот (МЭЖК) = 1:1; 1:2; 1:3,5; 1:7, выдерживанием смеси полиглицерина и МЭЖК без растворителя при перемешивании в вакууме 300 мбар при температуре 150°С в течение 2 часов, последующим добавлением катализатора - метилата натрия в количестве 0,4-0,6% от общей массы загрузки и выдерживанием реакционной массы при перемешивании и при температуре 230°С в вакууме 70 мбар в течение 6-8 часов с удалением выделяющегося метанола.
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ПОЛИГЛИЦЕРИНА И ЖИРНЫХ КИСЛОТ РАСТИТЕЛЬНЫХ МАСЕЛ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 31.
13.01.2017
№217.015.74d4

Способ определения полифенольных соединений методом ступенчатого элюирования в тонком слое сорбента

Изобретение относится к аналитической химии, а именно к способам стандартизации лекарственных препаратов, лекарственного растительного сырья, фитопрепаратов и биологически активных добавок по содержанию танина, галловой кислоты и кверцетина, и может быть использовано в фармацевтическом анализе,...
Тип: Изобретение
Номер охранного документа: 0002597661
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.b2da

Способ выделения никотиновой кислоты из водного раствора

Изобретение относится к способу выделения никотиновой кислоты из водного раствора, включающему фильтрацию водного раствора никотиновой кислоты через слой гранулированного серпентинита и анализ отфильтрованной водной фазы спектрофотометрическим методом. Технический результат - удешевление и...
Тип: Изобретение
Номер охранного документа: 0002613981
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2db

Способ выделения никотиновой кислоты из водного раствора

Изобретение относится к способу выделения никотиновой кислоты из водного раствора, включающему фильтрацию водного раствора никотиновой кислоты через слой гранулированного серпентинита и анализ отфильтрованной водной фазы спектрофотометрическим методом. Технический результат - удешевление и...
Тип: Изобретение
Номер охранного документа: 0002613981
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c1c8

Способ идентификации клопа вредной черепашки (eurygaster integriceps puton, 1881) на основе рестрикционного анализа гена цитохромоксидазы митохондриальной днк

Изобретение относится к области микробиологии, а именно к молекулярно-генетическому способу идентификации клопа вредной черепашки (Eurygaster integriceps). Производят сбор биологического материала и выделяют ДНК. Проводят ПЦР участка цитохромоксидазы митохондриальной ДНК. В качестве праймеров...
Тип: Изобретение
Номер охранного документа: 0002617935
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c805

Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения сложных эфиров оксикарбоновых кислот (гликолевой, винной, молочной, лимонной) и моноэтаноламидов жирных кислот растительных масел формулы (I), где R1 - остатки жирных кислот...
Тип: Изобретение
Номер охранного документа: 0002619118
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.caad

Замещенные пиразоло[1,5-а]пиридо[3,4-е]пиримидины и их использование в качестве ингибиторов протеинкиназ

Изобретение относится к применению замещенных пиразоло[1,5-а]пиридо[3,4-е]пиримидинов, характеризующихся приведенной ниже формулой, в которой R1 означает водород или фенил, R2 означает водород, R3 означает группу, выбранную из этильной, 2-гидроксиэтильной, 3-(N,N-диметил)-аминопропильной,...
Тип: Изобретение
Номер охранного документа: 0002619932
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e57f

Способ борьбы с гололедом на автодорогах

Изобретение относится к области борьбы с гололедом на автодорогах, а именно придания шереховатости ледяным и снежным покрытиям. Способ борьбы с гололедом на автодорогах включает использование в качестве нагревателя выхлопных газов, отводимых от выхлопной трубы глушителя устройством,...
Тип: Изобретение
Номер охранного документа: 0002626729
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.eb7e

Устройство формирования изображения

Изобретение относится к средствам отображения информации и может быть использовано для отображения трехмерных объектов, в частности, в системах навигации, машинного проектирования и конструирования, для визуализации томографической информации и при проведении сложных операций в медицине, при...
Тип: Изобретение
Номер охранного документа: 0002628371
Дата охранного документа: 16.08.2017
19.01.2018
№218.016.07d6

Устройство для мониторинга скорости коррозии

Изобретение относится к транспортной, энергетической, строительной и другим отраслям промышленности и может быть использовано для непрерывного (on-line) мониторинга скорости коррозии на таких объектах, как мосты, путепроводы, эстакады, градирни, дымовые трубы, резервуары и др. Заявленное...
Тип: Изобретение
Номер охранного документа: 0002631536
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.0803

Органический светодиодный микродисплей

Изобретение относится к области приборов на твердом теле с использованием органических материалов в качестве активной части, в частности к микродисплеям, изготовленным по OLED-технологии, и может быть использовано при создании дисплеев нового поколения, включая дисплеи объемного изображения, а...
Тип: Изобретение
Номер охранного документа: 0002631539
Дата охранного документа: 25.09.2017
Показаны записи 1-10 из 28.
20.06.2013
№216.012.4c2d

Способ получения замещенных пиримидин-5-илкарбоновых кислот

Изобретение относится к способу получения замещенных пиримидин-5-илкарбоновых кислот формулы I и может быть использовано в области органической химии. Способ осуществляют путем взаимодействия N-замещенных гуанидинов и гетариламидинов с этоксиметиленпроизводными 1,3-кетоэфиров согласно схеме,...
Тип: Изобретение
Номер охранного документа: 0002485083
Дата охранного документа: 20.06.2013
27.08.2013
№216.012.62a6

Способ использования соединений хинолинового ряда в качестве стимулятора роста для однолетника сальвия блестящая

Изобретение относится к цветоводству. В качестве стимулятора роста однолетника сальвия блестящая (Salvia splendens Ker Gawl.) используют одно из соединений хинолинового ряда 6-гидроксил-2,2,4-триметил-1,2,3,4-тетрагидрохинолин при концентрации 0,01-0,05% или...
Тип: Изобретение
Номер охранного документа: 0002490891
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.62a7

Стимулятор роста для видов рода rhododendron l.

Изобретение относится к сельскому хозяйству. Применение в качестве стимулятора роста для видов рода Rhododendron L. (семейство Ericaceae D.C.) одного из соединений 2,2,4-триметил-1,2,3,4-тетрагидрохинолин и 2,2,4-триметил-1,2-дигидрохинолин при концентрации 0,1%. Изобретение позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002490892
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.62a8

Способ использования соединений ряда пиримидин-карбоновых кислот в качестве стимулятора роста для однолетника бархатца отклоненного

Изобретение относится к цветоводству. В качестве стимулятора роста однолетника бархатца отклоненного (Tagetes patula L.) используют одно из соединений ряда пиримидин-карбоновых кислот 2-бензиламино-4-метилпиримидин-5-илкарбоновую кислоту в концентрации 0,05% и...
Тип: Изобретение
Номер охранного документа: 0002490893
Дата охранного документа: 27.08.2013
10.10.2014
№216.012.faeb

Способ извлечения церия

Изобретение относится к способам извлечения церия(IV) из сульфатных растворов методом экстракции и может быть использовано для концентрирования церия(IV) из руд, производственных растворов сложного солевого состава и в аналитических целях. Экстракцию ведут из 0,5-2,0 М сульфатного раствора...
Тип: Изобретение
Номер охранного документа: 0002530081
Дата охранного документа: 10.10.2014
10.02.2015
№216.013.24c6

Способ получения n-ацилпролинов, содержащих остатки жирных кислот

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения N-ацилпролинов, которые проявляют свойства пенообразователей и могут найти применение в косметических и моющих композициях. Способ получения N-ацилпролинов, содержащих остатки...
Тип: Изобретение
Номер охранного документа: 0002540867
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24c7

Способ получения тетрагидрофурфуриламидов жирных кислот растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения новых гетероциклических амидов, проявляющих свойства пеностабилизаторов, которые могут найти применение как составляющие моющих композиций. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002540868
Дата охранного документа: 10.02.2015
27.12.2015
№216.013.9d8a

Способ получения морфолилпропиламидов жирных кислот растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к получению морфолин-4-илпропиламидов жирных кислот растительных масел, которые могут быть применены в качестве антимикробных агентов в моющих композициях. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002571960
Дата охранного документа: 27.12.2015
27.01.2016
№216.014.bd9d

Способ получения поверхностно-активных веществ на основе соевого изолята и метиловых эфиров жирных кислот растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения поверхностно-активных веществ на основе соевого изолята и метиловых эфиров жирных кислот растительных масел, которые проявляют свойства пенообразователей, и могут найти...
Тип: Изобретение
Номер охранного документа: 0002573831
Дата охранного документа: 27.01.2016
13.01.2017
№217.015.8818

Ингибиторы коррозии меди и медьсодержащих сплавов

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов. Ингибитор коррозии содержит гетероциклическое органическое соединение класса азолов, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002602575
Дата охранного документа: 20.11.2016
+ добавить свой РИД