×
10.05.2018
218.016.4177

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения параметров интегральных микросхем и может быть использовано для контроля качества цифровых интегральных микросхем и определения их температурных запасов. Способ измерения теплового импеданса цифровых интегральных микросхем состоит в том, что контролируемая цифровая интегральная микросхема подключается к источнику питания с напряжением U, нечетное число логических элементов цифровой интегральной схемы соединяют по схеме кольцевого генератора, который периодически включают в режим генерации управляющими импульсами с периодом следования Т, длительность τ которых изменяют по гармоническому закону с частотой модуляции Ω, глубиной модуляции m и средним значением длительности τ: на частоте модуляции выделяют и измеряют амплитуду переменной составляющей тока, потребляемого цифровой интегральной схемой, амплитуду изменения частоты генерации кольцевого генератора и разность фаз Δϕ(Ω) между этими гармониками и модуль теплового импеданса цифровой интегральной схемы на частоте Ω определяют по формуле где K - известный отрицательный температурный коэффициент частоты генерации кольцевого генератора, а фазу ϕ(Ω) теплового импеданса рассчитывают по формуле: . Технический результат заключается в снижении погрешности и упрощении процесса измерений. 3 ил.

Изобретение относится к технике измерения параметров интегральных микросхем и может быть использовано для контроля качества цифровых интегральных микросхем и определения их температурных запасов.

Известен способ определения теплового импеданса КМОП цифровых интегральных микросхем (ЦИС), заключающийся в том, что один из логических элементов (ЛЭ) ЦИС устанавливают в состояние логической единицы, логическое состояния остальных ЛЭ ЦИС изменяют путем подачи на их входы высокочастотных греющих импульсов частотой повторения Fгр, последовательность греющих импульсов модулируют последовательностью видеоимпульсов с постоянным периодом следования Тсл, длительность τP которых изменяют по гармоническому закону: τPP0(1+msinΩMt) с частотой модуляции ΩM, глубиной модуляции m и средним значением длительности видеоимпульсов τP0; на частоте модуляции ΩM измеряют амплитуду переменной составляющей тока, потребляемого ЦИС, амплитуду переменной составляющей напряжения логической единицы на выходе того ЛЭ, логическое состояние которого поддерживается неизменным, и разность фаз Δϕ(ΩM) между этими гармониками и модуль теплового импеданса ЦИС на частоте ΩM определяют по формуле:

где KT - известный отрицательный температурный коэффициент напряжения логической единицы, Uпит - напряжение питания ЦИС; а фазу ϕTM) теплового импеданса ЦИС рассчитывают по формуле ϕTM)=Δϕ(ΩM)-180°.

Недостатком известного способа является большая погрешность измерения температурочувствительного параметра (ТЧП) - напряжения логической единицы - из-за наличия паразитного падения напряжения на токоведущей металлизации ЦИС и переходных электрических процессов при переключении ЦИС из режима нагрева в режим паузы (см., например, Сергеев В.А., Юдин В.В. Измерение тепловых параметров полупроводниковых изделий с применением амплитудно-импульсной модуляции греющей мощности // Измерительная техника. - 2010. - №6. - С. 32-39). К недостаткам способа относится также необходимость использования внешнего генератора высокочастотных переключающих импульсов.

Технический результат - повышение точности измерения теплового импеданса ЦИС и упрощение реализации способа.

Технический результат достигается тем, что ЦИС подключается к источнику питания с напряжением Uпит, нечетное число ЛЭ ЦИС соединяют по схеме кольцевого генератора (КГ), который периодически включают в режим генерации управляющими импульсами с периодом следования Тсл, длительность τУ которых изменяют по гармоническому закону с частотой модуляции ΩM, глубиной модуляции m и средним значением длительности τУ0:

на частоте модуляции выделяют и измеряют амплитуду переменной составляющей тока, потребляемого ЦИС, амплитуду изменения частоты генерации КГ и разность фаз Δϕ(ΩM) между этими гармониками и модуль теплового импеданса на частоте ΩM определяют по формуле

где KF - известный отрицательный температурный коэффициент частоты генерации КГ, а фазу ϕTM) теплового импеданса рассчитывают по формуле: ϕTM)=Δϕ(ΩM)-180°.

Сущность предлагаемого изобретения поясняется графиками на фиг. 1.

Во время действия управляющих импульсов UУ1 (фиг 1, а) с периодом следования Тсл, длительность τУ которых изменяют по гармоническому закону (2) с частотой ΩM и глубиной модуляции m, КГ, созданный на ЛЭ контролируемой ЦИС, включается в режим генерации и генерирует пачки высокочастотных импульсов (фиг. 1, б) частотой FКГ, которые разогревают ЦИС. Период следования управляющих импульсов UУ1 выбирают из условия

Поскольку мощность, потребляемая ЦИС, зависит от частоты греющих импульсов, то микросхема будет разогреваться последовательностью импульсов мощности амплитудой Ргр, широтно-импульсно модулированных по гармоническому закону (фиг. 1, б). Спектр этой последовательности содержит постоянную составляющую и первую гармонику на частоте ΩM модуляции амплитудой: (см., например, Торяник К.И. и др. Сигналы с широтно-импульсной модуляцией в системах связи // Материалы V Междунар. науч.-техн. школы-конференции «Молодые ученые-2008», 10-13 ноября 2008 г. - М.: МИРЭА, 2008. - Ч. 4. - С. 112-114).

При разогреве ЦИС переменной мощностью спектр температуры ее активной области может быть представлен в виде

где - тепловой импеданс ЦИС, а |ZT(Ω)| и ϕT(Ω) - его модуль и фаза соответственно, j - мнимая единица, P(Ω) - спектр греющей ЦИС мощности (см., например, Сергеев В.А. Методы и средства измерения тепловых параметров полупроводниковых приборов и интегральных схем // Электронная промышленность. - 2004. - №1. - С. 45-48).

Через некоторое время, превышающее три тепловых постоянных времени τТп-к переход-корпус ЦИС (t>3τТп-к), после начала периодического включения КГ в режим генерации в ЦИС установится регулярный тепловой режим, и температура Θ(t) активной области ЦИС будет пульсировать относительно некоторого квазистационарного значения , изменяющегося по закону, близкому к гармоническому, с частотой ΩM (фиг. 1г):

где ϕ - сдвиг фаз между первыми гармониками греющей мощности и температуры активной области ЦИС, - среднее значение температуры, ΘmM) - амплитуда переменной составляющей температуры на частоте ΩM. При выполнении условия τTn-к>>Тсл величина пульсаций δΘ(t) температуры активной области ЦИС будет во много раз меньше Θm:δΘ(t)<<Θm (см., например, Давидов П.Д. Анализ и расчет тепловых режимов полупроводниковых приборов. - М.: Энергия, 1967. - С. 100-116).

Любой температурочувствительный параметр SТП ЦИС, линейно зависящий от температуры активной области ЦИС, будет отслеживать изменение температуры (фиг. 1, д) и изменяться по закону, близкому к гармоническому, с амплитудой

Откуда и получаем выражение для модуля теплового импеданса:

Таким образом, если удается выделить и измерить первые гармоники изменения греющей мощности и изменения ТЧП, обусловленного изменением температуры, то модуль теплового импеданса определяется по формуле (8), а фаза теплового импеданса равна разности фаз между первой гармоникой греющей мощности и первой гармоникой температуры.

В данном способе в качестве ТЧП используется частота FКГ колебаний КГ, которая линейно зависит от температуры с отрицательным температурным коэффициентом KT (см., например, Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. - Л.: Энергоатомиздат, 1986, стр. 75) и никак не зависит от переходных электрических процессов и падения напряжения на токоведущей металлизации ЦИС, что и обеспечивает достижение технического эффекта. При реализации предлагаемого способа не требуется отдельный генератор высокочастотных переключающих импульсов. Кроме того, современная измерительная техника обеспечивает измерение частоты колебаний точнее, чем амплитуду импульсных напряжений.

В результате линейной температурной зависимости значение FКГ во время действия управляющих импульсов будет повторять (с обратным знаком) изменение температуры активной области ЦИС, а амплитуда первой гармоники переменной составляющей частоты FКГ будет равна:

Заметим, что частота FКГ может быть измерена только в режиме генерации КГ, причем за время действия управляющих импульсов эта частота несколько снижается из-за пульсации температуры относительно квазистационарного значения, и, строго говоря, выражение (9) справедливо для первой гармоники средней за время действия управляющих импульсов частоты КГ.

Мощность Ргр, потребляемую ЦИС в режиме генерации КГ, можно определить, зная напряжение питания и измерив средний за период генерации ток Iпот, потребляемый ЦИС из источника питания за время действия управляющих импульсов:

Заметим также, что амплитуда средней за период греющей мощности во время действия пачек греющих импульсов различной длительности будет различной, поскольку эта мощность определяется частотой FКГ, а эта частота изменяется с изменением температуры. Однако, этот эффект автоматически учитывается при выделении и измерении первой гармоники греющей мощности на частоте модуляции.

На фиг. 2 представлена структурная схема одного из вариантов устройства, реализующего способ, а на фиг. 3 - эпюры сигналов, поясняющие его работу. Устройство содержит контролируемую ЦИС 1, нечетное число ЛЭ которой соединено по схеме КГ, размещенную на теплоотводе и подключенную к источнику питания 2 с напряжением Uпит; устройство управления 3, выход которого подключен к одному из входов первого ЛЭ КГ; токосъемный резистор 4 с сопротивлением R; первый селективный вольтметр 5; преобразователь частоты в напряжение 6, устройство выделения огибающей последовательности видеоимпульсов 7, второй селективный вольтметр 8; измеритель разности фаз 9.

Устройство работает следующим образом. По сигналу «Пуск» устройство управления 3 вырабатывает управляющие импульсы периодом Тсл и длительностью, изменяющейся по гармоническому закону с частотой модуляции ΩM (фиг. 3, а), эти импульсы периодически включают КГ в режим генерации (фиг. 3, б). Напряжение с токосъемного резистора 4, пропорциональное току, потребляемому контролируемой ЦИС (фиг. 3, в), подается на вход первого селективного вольтметра 5, настроенного на частоту модуляции. При выполнении условий и τТn-к>>Тсл температура Θ(t) активной области ЦИС будет изменяться по закону, близкому к гармоническому, с небольшими пульсациями относительно квазистационарного значения (фиг. 3, г). Пачки импульсов частотой FКГ с выхода КГ подаются на вход преобразователя частоты в напряжение 6; импульсы напряжения амплитудой UF, пропорциональной частоте FКГ (рис. 3, д), с выхода преобразователя частоты в напряжение 6 поступают на вход устройства выделения огибающей (рис. 3, д) последовательности видеоимпульсов 7, а с выхода этого устройства переменная составляющая напряжения , пропорциональная температурному изменению частоты FКГ, поступает на вход второго селективного вольтметра 8, также настроенного на частоту модуляции. Сигналы с линейных выходов первого 5 и второго 8 селективных вольтметров поступают на первый и второй входы измерителя разности фаз 9 соответственно. Через некоторое время после сигнала «Пуск» регистрируют показание UCB1 первого селективного вольтметра 5, пропорциональное первой гармонике тока, потребляемого контролируемой ЦИС: , и показание UCB2 второго селективного вольтметра 8, пропорциональное амплитуде первой гармоники изменения частоты генерации КГ: , где Knp - известный коэффициент преобразования частоты в напряжение; по показаниям селективных вольтметров вычисляют модуль теплового импеданса:

а по показанию измерителя разности фаз Δϕ - фазу теплового импеданса:


СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 216.
17.02.2018
№218.016.2d7d

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способe получения износостойкого многослойного покрытия для режущего инструмента и может быть использовано в металлообработке. Наносят ионно-плазменное многослойное покрытие. Сначала наносят нижний слой из нитрида титана и алюминия при их соотношении, мас. %: титан...
Тип: Изобретение
Номер охранного документа: 0002643758
Дата охранного документа: 05.02.2018
17.02.2018
№218.016.2dbc

Устройство для исследования двустороннего торцового шлифования деталей

Изобретение относится к автоматизации технологических процессов и может быть использовано при шлифовании заготовок деталей машин и приборов на шлифовальных станках. Устройство содержит рабочий и базовый шлифовальные круги, привод вращения детали и привод ее врезной подачи. Предусмотрены...
Тип: Изобретение
Номер охранного документа: 0002643538
Дата охранного документа: 02.02.2018
17.02.2018
№218.016.2dd5

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Осуществляют вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, ниобия, алюминия, кремния и хрома при их соотношении, мас. %: титан 35,4,...
Тип: Изобретение
Номер охранного документа: 0002643536
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.3051

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает проведение ионно-плазменного нанесения многослойного покрытия, состоящего из нижнего...
Тип: Изобретение
Номер охранного документа: 0002644983
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.321b

Узловое соединение стержней п-образного сечения пространственной конструкции

Изобретение относится к строительству, а именно к узловому соединению тонкостенных стержней пространственной конструкции, и может найти применение в оболочках сферической, конической и других пространственных форм сооружений из металлических стержней П-образного сечения. Узловое соединение...
Тип: Изобретение
Номер охранного документа: 0002645319
Дата охранного документа: 20.02.2018
10.05.2018
№218.016.3a13

Логический преобразователь

Изобретение относится к вычислительной технике. Технический результат - повышение быстродействия при сохранении аппаратурного состава и функциональных возможностей прототипа. Для этого предложен логический преобразователь, предназначенный для реализации любой из простых симметричных булевых...
Тип: Изобретение
Номер охранного документа: 0002647639
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3f94

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, ниобия и молибдена при их соотношении, мас. %: титан 63,56,...
Тип: Изобретение
Номер охранного документа: 0002648814
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4053

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, хрома и ниобия при их соотношении, мас. %: титан 56,37,...
Тип: Изобретение
Номер охранного документа: 0002648964
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.406e

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, циркония и ниобия при их соотношении, мас.%: титан 57,25,...
Тип: Изобретение
Номер охранного документа: 0002648963
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4071

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, ниобия и железа при их соотношении, мас. %: титан 60,53,...
Тип: Изобретение
Номер охранного документа: 0002648927
Дата охранного документа: 28.03.2018
Показаны записи 21-28 из 28.
10.07.2019
№219.017.b01e

Способ измерения теплового импеданса полупроводниковых диодов

Способ предназначен для использования на выходном и входном контроле качества полупроводниковых диодов и оценки их температурных запасов. На исследуемый диод подают импульсы греющего тока постоянной амплитуды. В промежутках между импульсами греющего тока пропускают постоянный начальный ток....
Тип: Изобретение
Номер охранного документа: 0002402783
Дата охранного документа: 27.10.2010
03.08.2019
№219.017.bc4a

Способ неразрушающего контроля качества сверхбольших интегральных схем по значению критического напряжения питания

Изобретение относится к микроэлектронике и может быть использовано для обеспечения качества и надежности сверхбольших интегральных схем (СБИС). Сущность: измеряют критическое напряжение питания при нормальной и повышенной температуре. СБИС предварительно программируют тестирующей программой для...
Тип: Изобретение
Номер охранного документа: 0002696360
Дата охранного документа: 01.08.2019
12.08.2019
№219.017.be42

Способ измерения переходной тепловой характеристики цифровых интегральных схем

Изобретение относится к измерительной технике и может быть использовано для контроля тепловых свойств цифровых интегральных схем (ЦИС). Сущность: для измерения переходной тепловой характеристики (ПТХ) цифровой интегральной схемы нечетное количество логических элементов включают по схеме...
Тип: Изобретение
Номер охранного документа: 0002697028
Дата охранного документа: 08.08.2019
12.10.2019
№219.017.d50f

Сигнализатор температуры

Изобретение относится к области измерения температуры и может быть использовано для регулирования температуры нагрева или охлаждения объекта. Сигнализатор температуры содержит генератор прямоугольных импульсов из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по...
Тип: Изобретение
Номер охранного документа: 0002702685
Дата охранного документа: 09.10.2019
19.11.2019
№219.017.e374

Устройство автоматического повторного включения

Использование: в области электротехники. Технический результат – повышение чувствительности устройства при автоматическом повторном включении после самоустранения короткого замыкания и уменьшение массогабаритных показателей. Устройство автоматического повторного включения содержит...
Тип: Изобретение
Номер охранного документа: 0002706332
Дата охранного документа: 18.11.2019
29.04.2020
№220.018.1a56

Способ измерения тепловых сопротивлений переход-корпус и тепловых постоянных времени переход-корпус кристаллов полупроводниковых изделий в составе электронного модуля

Изобретение относится к технике измерения тепловых параметров кристаллов бескорпусных полупроводниковых изделий в составе электронных модулей и может быть использовано для контроля качества сборки электронных модулей как на этапах разработки и производства электронных модулей, так и на входном...
Тип: Изобретение
Номер охранного документа: 0002720185
Дата охранного документа: 27.04.2020
06.07.2020
№220.018.2f81

Способ измерения граничной частоты электролюминесценции локальных областей светоизлучающей гетероструктуры

Изобретение относится к технике измерения динамических характеристик светодиодов и полупроводниковых светоизлучающих структур и может быть использовано для диагностики однородности светоизлучающих гетероструктур (СГС) и их характеристики по динамическим свойствам. Способ измерения граничной...
Тип: Изобретение
Номер охранного документа: 0002725613
Дата охранного документа: 03.07.2020
03.06.2023
№223.018.763c

Способ неразрушающей диагностики дефектов сквозного металлизированного отверстия печатной платы

Изобретение относится к средствам неразрушающего контроля качества сквозных металлизированных отверстий (СМО) печатных плат (ПП). Технический результат - повышение достоверности выявления дефектов и в обеспечение возможности их идентификации. Технический результат достигается тем, что в способе...
Тип: Изобретение
Номер охранного документа: 0002761863
Дата охранного документа: 13.12.2021
+ добавить свой РИД