×
04.04.2018
218.016.2f40

Катализатор гидроочистки сырья гидрокрекинга

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к катализаторам предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга. Описан катализатор, содержащий, мас.%: [Ni(HO)][MoO(CHO)] 29,0-36,0%; бор в форме поверхностных соединений - 0,4-1,6%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-AlO - остальное. Борат алюминия AlBO со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см в ИК-спектрах. После сульфидирования катализатор содержит, мас.%: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений - 0,5-2,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-AlO - остальное. Технический результат - максимальная активность в обессеривании и деазотировании при гидроочистке нефтяных фракций с температурой начала кипения выше 360°С, с получением качественного сырья гидрокрекинга. 4 з.п. ф-лы, 7 пр., 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к катализаторам предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга.

Современные процессы гидрокрекинга включают несколько последовательных стадий, на первой из которых осуществляется предварительная гидроочистка фракций с температурой начала кипения выше 360°С с получением сырья с пониженным содержанием серы, азота и полициклических ароматических соединений. Необходимость максимально возможного снижения содержания этих компонентов в сырье обусловлена тем, что они являются каталитическими ядами для катализаторов последующих стадий. Далее такое гидроочищенное сырье подается на гидрокрекинг, проводящийся на цеолитсодержащих катализаторах. Наиболее типичные примеры многостадийных процессов описаны в патентах [Пат. РФ №2470989, 27.11.2011; Пат. РФ №2565669, 20.10.2015; Пат. РФ №2595041, 20.08.2016]. В данных вариантах процесса на первой стадии используются известные катализаторы, содержащие металлы VIб и VIII групп Периодической системы, нанесенные на алюмооксидный или алюмосиликатный носитель. Основным недостатком этих катализаторов является их низкая обессеривающая и деазотирующая активность.

В связи с этим, в мире активно разрабатываются катализаторы и способы приготовления катализаторов, предназначенные для гидрообработки или гидроочистки углеводородного сырья, сочетающие высокую обессеривающую и деазотирующую активность.

Так известен катализатор [Заявка РФ №2012154275, B01J 31/02, 10.07.14], композиция которого включает, по меньшей мере, один металл группы 6 Периодической таблицы элементов, по меньшей мере, один металл групп 8-10 Периодической таблицы элементов и продукт реакции, образованный первым органическим соединением, содержащим, по меньшей мере, одну аминогруппу и, по меньшей мере, 10 атомов углерода, или вторым органическим соединением, содержащим, по меньшей мере, одну группу карбоновой кислоты и, по меньшей мере, 10 атомов углерода, но не обоими соединениями, в которой продукт реакции содержит дополнительные ненасыщенные атомы углерода по отношению к первому органическому соединению или второму органическому соединению, металлы композиции предшественника катализатора расположены в кристаллической решетке и продукт реакции не локализован в кристаллической решетке.

Известен также катализатор [Пат. РФ №2472585, B01J 23/882, 20.01.2013], содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0; S - 5,0-15,0; В - 0,5-2,0; С - 0,5-7,0; Al2O3 - остальное, при этом носитель содержит, мас.%: В - 0,7-3,0; Al2O3 - остальное и имеет удельную поверхность 170-300 м2/г, объем пор 0,5-0,95 см3/г и средний диаметр пор 7-22 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, имеющие механическую прочность 2,0-2,5 кг/мм.

Общим недостатком для описанных катализаторов является высокое остаточное содержание серы и азота в получаемых с их использованием гидроочищенных продуктах.

Наиболее близким к предлагаемому техническому решению является описанный в [Пат. РФ №2629358, С10С 45/08, B01J 23/882, 09.11.2016] катализатор, содержащий, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. При этом борат алюминия представляет собой частицы с размерами от 10 до 200 нм. После сульфидирования катализатор содержит, мас.%: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Основным недостатком известного катализатора является то, что он имеет неоптимальный химический состав, что обуславливает его низкую активность в реакциях деазотирования и обессеривания. Известный катализатор содержит бор в форме бората алюминия Al3BO6 со структурой норбергита. Однако вследствие того, что борат алюминия Al3BO6 со структурой норбергита, содержится в катализаторе в форме достаточно крупных частиц с размерами от 10 до 200 нм, поверхность которых на стадиях грануляции и нанесения активных металлов полностью блокируется оксидом алюминия, соединениями никеля и молибдена, бор никак не влияет на кислотные характеристики готового катализатора и никак не участвует в катализе. В последние годы установлено, что увеличение поверхностной кислотности катализаторов способствует возрастанию деазотирующей и обессеривающей активности [Catalysis Today 292 (2017) 58-66; Applied Catalysis А: General 530 (2017) 132-144]. Увеличение кислотности катализатора приводит к увеличению его активности как за счет участия поверхностных Бренстедовских центров в катализе реакций деазотирования, так и за счет увеличения дисперсности сульфидных частиц и повышения их активности в обессеривании.

Соответственно, известный катализатор имеет низкую кислотность и, как следствие, относительно низкую активность в деазотировании и обессеривании.

Предлагаемое изобретение решает задачу создания улучшенного катализатора гидроочистки нефтяных фракций с температурой начала кипения выше 360°С, характеризующегося:

1. Оптимальным химическим составом катализатора, который содержит бор в форме двух различных типов химических соединений - входящий в состав носителя с концентрацией 5,0-25,0% борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор с концентрацией 0,4-1,6% в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

2. Повышенной поверхностной кислотностью, в особенности наличием сильных Бренстедовских кислотных центров (БКЦ), определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовских кислотных центров средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль), обеспечивающих возрастание деазотирующей активности.

3. Наличием в его составе соединения никеля, который имеет повышенную обессеривающую, гидрирующую и деазотирующую активностью при условиях процесса, используемых для гидроочистки нефтяных фракций с температурой начала кипения выше 360°С.

4. Наличием на поверхности катализатора дисперсных соединений бора, способствующих повышению дисперсности нанесенных соединений никеля и молибдена, что приводит к увеличению обессеривающей активности.

5. Оптимальными текстурными характеристиками, обусловленными присутствием в катализаторе частиц бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм, способствующими получению катализатора, объем и размер пор которого обеспечивают доступ всех подлежащих превращению молекул сырья к активному компоненту.

Технический результат - получение катализатора, имеющего максимальную активность в целевых реакциях деазотирования и обессеривания, протекающих при гидроочистке углеводородного сырья.

Задача решается катализатором гидроочистки сырья гидрокрекинга, который содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; бор в форме поверхностных соединений - 0,4-1,6%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. При этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Входящий в состав катализатора бор в форме поверхностных соединений, характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Катализатор содержит сильные Бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль).

Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. После сульфидирования катализатор содержит, мас.%: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений - 0,5-2,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Отличительным признаком предлагаемого катализатора по сравнению с прототипом является его химический состав, а именно, то, что заявляемый катализатор содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2], 29,0-36,0%; бор в форме поверхностных соединений - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Выход содержания компонентов катализатора за заявляемые границы приводит к снижению активности катализатора. Повышение содержания бора в форме поверхностных соединений более 1,6% недостижимо вследствие ограниченной растворимости борной кислоты в воде.

Вторым отличительным признаком предлагаемого катализатора по сравнению с прототипом является то, что он содержит поверхностные дисперсные соединения бора, характеризующиеся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Третьим отличительным признаком предлагаемого катализатора по сравнению с прототипом является то, что поверхностные соединения бора обеспечивают повышение кислотности катализатора за счет образования сильных Бренстедовских кислотных центров, определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовских кислотных центров средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль).

Технический эффект предлагаемого катализатора складывается из следующих составляющих:

1. Данный химический состав катализатора обуславливает максимальную активность в целевых реакциях деазотирования и обессеривания, протекающих при гидроочистке углеводородного сырья. Наличие в составе катализатора бора в форме двух различных типов химических соединений - входящего в состав носителя с концентрацией 5,0-25,0% бората алюминия Al3BO6 со структурой норбергита, и бора с концентрацией 0,4-1,6% в форме поверхностных соединений, обеспечивает оптимальное сочетание текстурных и кислотных характеристик носителя и катализатора.

2. Наличие в составе катализатора бората алюминия Al3BO6 со структурой норбергита с заявляемой концентрацией способствует минимизации нежелательного химического взаимодействия между активными металлами (Ni и Мо) и носителем, и селективному получению наиболее активного в гидроочистке сульфидного компонента - NiMoS фазы типа II.

3. Наличие в составе катализатора бората алюминия Al3BO6 со структурой норбергита представляющего собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту.

4. Наличие в составе катализатора биметаллических комплексных соединений [Ni(H2O)2]2[Mo4O11(C6H5O7)2], обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке, наиболее активного компонента - NiMoS фазы типа II в форме частиц оптимальной для катализа морфологии, локализованных в порах, доступных для всех подлежащих превращению молекул, входящих в нефтяные фракций с температурой начала кипения выше 360°С.

5. Наличие в составе катализатора бора с концентрацией 0,4-1,6% в форме поверхностных соединений, характеризующихся полосами поглощения полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах, приводит к получению катализатора, который после сульфидирования имеет высокую дисперсность нанесенных металлов, обеспечивающую повышение активности сульфидного компонента в целевых реакциях обессеривания и деазотирования.

6. Наличие в составе катализатора поверхностных соединений бора, обеспечивающих повышение кислотности катализатора за счет образования сильных Бренстедовских кислотных центров, определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовских кислотных центров средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль). Такие кислотные центры способствуют возрастанию деазотирующей активности катализатора.

Описание предлагаемого технического решения.

Готовят носитель, содержащий борат алюминия Al3BO6 со структурой норбергита и γ-Al2O3.

Берут навеску продукта термической активации гидраргиллита (ПТАГ), приготовленного по технологии центробежной термоактивации (ИК СО РАН, ТУ 2175-040-03533913-2007), или любой другой технологии, обеспечивающей получение ПТАГ со следующими характеристиками: массовая доля рентгеноаморфной фазы, %, не менее 80; доля потери массы при прокаливании при (900±20)°С, - 10-12; удельная поверхность, м2/г, не менее 120; суммарный объем пор (влагоемкость), см3/г, не менее 0,1; массовая доля гиббсита (гидраргиллита), %, не более 5; массовая доля натрия оксида, %, не более 0,5. Навеску измельчают на планетарной мельнице до частиц со средним размером 20 мкм.

Навеску измельченного порошка гидратируют при перемешивании в течение двух часов в нагретых до 50°С слабоконцентрированных растворах азотной кислоты (кислотный модуль 0,03). После чего полученную суспензию фильтруют под вакуумом и многократно промывают дистиллированной водой. В результате получают влажный осадок. Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества борной кислоты при температуре раствора выше 100°С. После завершения гидротермальной обработки раствор охлаждают до комнатной температуры, автоклав разгружают, содержимое сосуда репульпируют дистиллированной водой до получения суспензии пригодной для распылительной сушки. Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не менее 150°С и непрерывном перемешивании суспензии. Готовый порошок борсодержащего гидроксида алюминия выгружают из стакана циклонного пылеуловителя распылительной сушилки.

Далее готовят формовочную массу методом смешения и пептизации полученного порошка в лабораторном смесителе с Z-образными лопастями в присутствии 2,5%-ного водного раствора аммиака. Готовую пластичную массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме круга, трилистника или четырехлистника с размером от вершины трилистника до середины основания от 1,0 до 1,6 мм.

Затем проводят термообработку экструдатов, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре (110±10)°С в течение 2-х ч. Термическую обработку проводят в муфельной печи с подачей сжатого воздуха в печь. Экструдаты в фарфоровой чашке помещали в печь и прокаливают при температуре (550±10)°С в течение 4 ч.

Готовый носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное, и имеет удельную поверхность 200-280 м2/г, объем пор 0,6-0,8 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] Для этого отвешивают заданные количества парамолибдата аммония (NH4)6Mo7O24⋅4H2O, никеля (II) углекислого основного водного NiCO3⋅mNi(OH)2⋅nH2O, кислоты лимонной моногидрата. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 60°С. Загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навеску парамолибдата аммония при постоянном перемешивании и поддержании температуры раствора (60±5)°С. Раствор перемешивают до образования однородного прозрачного раствора, содержащего комплексное соединение - цитрат молибдена (VI) (NH4)4[Mo4(C6H5O7)2O11]. Навеску никеля (II) углекислого основного водного добавляют к ранее полученному водному раствору цитрата молибдена (VI). При этом жидкость вспенивается, а ее температура повышается до 70°С. Перемешивание продолжают при (75-80)°С до получения однородного прозрачного раствора ярко-зеленого цвета, не содержащего мути, пузырьков и пены. Раствор содержит никель и молибден в форме биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2].

Далее к раствору при перемешивании и продолжающемся нагревании добавляют борную кислоту H3BO3 в количестве, обеспечивающем получение катализатора, содержащего 0,4-1,6% бора в форме поверхностных соединений, перемешивание продолжают до полного растворения борной кислоты.

Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.

Полученным раствором пропитывают борсодержащий носитель, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора. Пропитку проводят при температуре 15-90°С в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора. После пропитки катализатор сушат на воздухе при температуре 100-200°С.

В результате, получают катализатор, содержащий [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; бор в форме поверхностных соединений - 0,4-1,6%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. При этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Катализатор содержит сильные Бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль).

Для подтверждения наличия или отсутствия в составе катализатора поверхностных соединений бора и Бренстедовских кислотных центров, катализатор изучают методом ИК-спектроскопии. Для подтверждения наличия в катализаторе бората алюминия Al3BO6 со структурой норбергита проводят изучение катализаторов методом просвечивающей электронной микроскопии высокого разрешения (ПЭМВР), в ходе которого определяют размеры частиц Al3BO6, межплоскостные расстояния и угол между ними.

Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

После сульфидирования по известным методикам, катализатор содержит, мас.%: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений - 0,5-2,0%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Согласно известному решению [Пат. РФ №2629358]

Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

100г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 мин. Затем катализатор сушат на воздухе при 100°С.

Полученный катализатор содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее проводят запись ИК-спектров, которые регистрировали на спектрометре Shimadzu FTIR-8300 в спектральном диапазоне 700-6000 см-1 с разрешением 4 см-1, проводили 300 сканов для накопления сигнала. Данные ИК-спектроскопии приведены в таблице 1.

Снимки ПЭМВР были получены на электронном микроскопе JEM-2010 (JEOL, Япония) с разрешающей способностью решетки 0,14 нм при ускоряющем напряжении 200 кВ. По данным ПЭМВР в составе катализатора присутствуют частицы бората алюминия Al3BO6 со структурой норбергита с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Катализатор сульфидируют прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас.% сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 по следующей программе:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течении 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;

- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340 С со скоростью подъема температуры 25°С/ч;

- сульфидирование проводят при температуре 340°С в течение 8 ч.

В результате получают катализатор, который содержит мас.%: Мо - 12,5; Ni - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга, в качестве которого используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 0,95% серы и 0,16% азота. Гидроочистку проводят при давлении 16,0 МПа, объемном расходе сырья 0,75 ч-1, объемном отношение водород/сырье 1000 нм33, температуре 380°С.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят борсодержащий носитель аналогично примеру 1. В результате получают носитель, содержащий мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее температуру раствора поднимают до 90°С и растворяют в нем 44,63 г борной кислоты H3BO3. После полного растворения всех компонентов, добавлением нагретой до 90°С дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты при 90°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.

Полученный катализатор содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений, характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит мас.%: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 3.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий мас.%: борат алюминия Al3BO6 со структурой норбергита -12,0; натрий - 0,028; γ-Al2O3 - остальное.

100 г полученного носителя пропитывают при 70°С по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 2. Затем катализатор сушат на воздухе при 100°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит мас.%: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 4.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий мас.%: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании и нагревании до 70°С последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 11,15 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 0,4; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас.%: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 0,5; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 5.

Готовят носитель также, как в примере 3.

Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 42,23 г лимонной кислоты C6H8O7; 77,58 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 27,1 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3.

После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя при комнатной температуре пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 29,3; бор в форме поверхностных соединений - 0,8; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,65 см3/г, средний диаметр пор 15 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений, характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас.%: Мо - 10,0; Ni - 3,0; S - 6,7; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 6.

Готовят носитель также, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде круга диаметром 1,0 мм.

Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при нагревании до 80°С и перемешивании последовательно растворяют 56,9 г лимонной кислоты C6H8O7; 104,53 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 36,5 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 80°С, в колбу приливают 200 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], также нагретого до 80°С. Пропитку продолжают в течение 20 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 35,8; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 130 м2/г, объем пор 0,35 см3/г, средний диаметр пор 10 нм, и представляет собой частицы с сечением в виде круга с диаметром 1,0 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит мас.%: Мо - 14,0; Ni - 4,3; S - 9,4; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 7.

Готовят носитель также, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника диаметром 1,6 мм.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 30°С, в колбу приливают 133 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 5, также нагретого до 30°С. Пропитку продолжают в течение 60 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 30,6%; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 175 м2/г, объем пор 0,6 см3/г, средний диаметр пор 14 нм, и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас.%: Мо - 11,7; Ni - 3,6; S - 7,9; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Таким образом, как видно из приведенных примеров, предлагаемый катализатор, который содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений - 0,4-1,6; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; позволяет получить сырье гидрокрекинга с гораздо меньшим содержанием серы и азота, чем с использованием катализатора-прототипа.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 100.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c2f

Способ получения стирола

Изобретение относится к способу получения стирола каталитическим превращением соответствующего ацетофенона в реакторе проточного типа. Способ характеризуется тем, что процесс осуществляют в сверхкритическом двухкомпонентном растворителе с использованием гетерогенного гранулированного...
Тип: Изобретение
Номер охранного документа: 0002485085
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.56ec

Способ получения 1-фенилэтанола и паразамещенных 1-фенилэтанола

Изобретение относится к способу получения 1-фенилэтанола или пара-замещенного 1-фенилэтанола, который применяют в качестве промежуточных соединений в различных областях органической химии. Способ заключается в каталитическом восстановлении замещенных ацетофенонов в реакторе проточного типа в...
Тип: Изобретение
Номер охранного документа: 0002487860
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.78c4

Катализатор для термохимической рекуперации тепла в гибридной силовой установке

Изобретение относится к разработке катализаторов для осуществления термохимической конверсии углеводородных и кислородсодержащих топлив за счет тепла отходящих газов двигателей внутреннего сгорания, являющихся составной частью гибридных силовых установок. Описан катализатор для термической...
Тип: Изобретение
Номер охранного документа: 0002496578
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79f0

Нанокомпозит с активным лигандом, способ его приготовления и способ адресной инактивации вируса гриппа внутри клетки

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Заявляемые нанокомпозиты предназначены для направленного воздействия на генетический материал внутри клетки и подавления его дальнейшего функционирования. Нанокомпозиты, состоящие из наночастиц диоксида...
Тип: Изобретение
Номер охранного документа: 0002496878
Дата охранного документа: 27.10.2013
Показаны записи 1-10 из 140.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c2f

Способ получения стирола

Изобретение относится к способу получения стирола каталитическим превращением соответствующего ацетофенона в реакторе проточного типа. Способ характеризуется тем, что процесс осуществляют в сверхкритическом двухкомпонентном растворителе с использованием гетерогенного гранулированного...
Тип: Изобретение
Номер охранного документа: 0002485085
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.56ec

Способ получения 1-фенилэтанола и паразамещенных 1-фенилэтанола

Изобретение относится к способу получения 1-фенилэтанола или пара-замещенного 1-фенилэтанола, который применяют в качестве промежуточных соединений в различных областях органической химии. Способ заключается в каталитическом восстановлении замещенных ацетофенонов в реакторе проточного типа в...
Тип: Изобретение
Номер охранного документа: 0002487860
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.78c4

Катализатор для термохимической рекуперации тепла в гибридной силовой установке

Изобретение относится к разработке катализаторов для осуществления термохимической конверсии углеводородных и кислородсодержащих топлив за счет тепла отходящих газов двигателей внутреннего сгорания, являющихся составной частью гибридных силовых установок. Описан катализатор для термической...
Тип: Изобретение
Номер охранного документа: 0002496578
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79f0

Нанокомпозит с активным лигандом, способ его приготовления и способ адресной инактивации вируса гриппа внутри клетки

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Заявляемые нанокомпозиты предназначены для направленного воздействия на генетический материал внутри клетки и подавления его дальнейшего функционирования. Нанокомпозиты, состоящие из наночастиц диоксида...
Тип: Изобретение
Номер охранного документа: 0002496878
Дата охранного документа: 27.10.2013
+ добавить свой РИД