×
17.02.2018
218.016.2c75

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО МАТЕРИАЛА ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

Вид РИД

Изобретение

№ охранного документа
0002643164
Дата охранного документа
31.01.2018
Аннотация: Изобретение относится к области химических технологий и может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Способ получения катодного материала для литий-ионных аккумуляторов включает сжигание исходного реакционного раствора, содержащего смесь нитратов соответствующих металлов и, по крайней мере, один гелирующий агент, в качестве которого используют глицин в количестве 200-400 г на 1000 г безводных нитратов, с последующей сушкой, пропиткой полученного сложного оксида d-металлов соединениями лития и отжигом, в исходный реакционный раствор вводят лимонную кислоту в количестве 650-1000 г на 1000 г безводных нитратов, а также в качестве гелирующего агента кроме глицина используют мочевину в количестве 200-350 г на 1000 г безводных нитратов. Изобретение позволяет улучшить условия производства и уменьшить его экологическую нагрузку за счет исключения сброса маточных растворов и практически полное исключение выбросов диоксида азота.

Изобретение относится к области химических технологий и может быть использовано для получения катодных материалов литий-ионных аккумуляторов.

Известен способ получения катодного материала для литий-ионных аккумуляторов состава LiNii1-x-yCoxMnyO2, включающий смешение соединения лития с соединениями d-металлов одного ряда из числа оксидов, гидроксидов или солей кобальта, никеля и марганца, с последующей термической обработкой полученной смеси при температуре 800-1100°С в атмосфере кислорода и охлаждение до комнатной температуры. Диспергирование исходных реагентов ведут в шаровой мельнице или механохимическом активаторе с последующим активированием с использованием водных или спиртовых растворов гидроксидов, оксигидроксидов или солей металлов, разлагающихся с образованием оксидов металлов при температуре не выше 600°С (патент RU 2307429, МПК H01M 4/04, H01M 10/40, 2007 год).

Общими признаками с заявляемым способом являются смешение исходных соединений d-металлов, термическая обработка при температуре 700-1100°С.

Недостатками известного способа являются использование в качестве предшественника гидроксидов и оксигидроксидов d-металлов, что усложняет процесс получения за счет наличия дополнительных операций по их получению. Кроме того, необходим дополнительный оперативный контроль состава гидроксидов d-металлов ввиду его нестабильности при хранении и дополнительные расходы на утилизацию маточных растворов от производства гидроксидов кобальта, марганца и никеля.

Известен способ получения активного катодного материала для перезаряжаемых литиевых батарей состава Li1+aNiIbNiIIcMndCoeO2, включающий получение в качестве прекурсора смешанного гидроксида никеля и марганца (кобальта), смешение гидроксида с соединением лития, например с карбонатом лития, в количестве, достаточном для получения материала, содержащего избыток лития после завершения реакции, и отжиг смеси при температуре 850-1000°С в течение 10 часов (патент RU 2430449, МПК H01M 4/525, H01M 10/52, 2011 год).

Общим признаком с заявляемым способом является активный катодный материал для перезаряжаемой литиевой батареи.

Недостатком данного способа является необходимость предварительных операций по получению прекурсора смешанного гидроксида никеля и марганца (кобальта), его отмывка от маточного раствора, утилизация маточного раствора от производства гидроксидов кобальта, марганца и никеля, сушка перед смешением с литием и необходимость контроля соотношения d-катионов перед внесением в смесь карбоната лития.

Наиболее близким по технической сущности к заявляемому является способ получения катодного материала для литий-ионных аккумуляторов (патент RU 2451369, МПК H01M 4/52, 2012 год) (прототип), включающий нагревание исходного раствора нитратов соответствующих металлов и гелирующего агента с последующей сушкой и кальцинированием полученного после нагревания исходной смеси порошка, при этом в качестве гелирующего агента используют глицин в количестве 280-500 г на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2 : Co+2 : Ni+2, равном 1:1:1; а нитрат лития вводят путем пропитки им порошка, полученного после нагревания и сушки исходной смеси.

Недостатками известного способа являются:

во-первых: уменьшение содержания глицина ниже 400 г на 1000 г безводных нитратов кобальта, марганца и никеля приводит к выделению оксидов азота, что ухудшает морфологию конечного продукта, условия производства и экологическую обстановку;

во-вторых: при использовании глицина в количестве 400-500 г на 1000 г безводных нитратов кобальта, марганца и никеля процесс протекает в виде бурной реакции, что оказывает негативное влияние на морфологию конечного продукта и создает необходимость улавливания частиц порошка продукта, выносимого с газовыми выбросами в атмосферу;

в-третьих: нет возможности существенно увеличивать массу получаемого сложного оксида из-за пропорционального ему увеличения интенсивности процесса, сопровождаемого возрастающим выносом порошка смешанного оксида, его потерям, что приводит к удорожанию производства катодного материала.

Технический результат, достигаемый в предлагаемом способе получения катодного материала для литий-ионных аккумуляторов, заключается в обеспечении стехиометрического состава, морфологии продукта и стабильности электрохимических характеристик при использовании в качестве катодного материала для литий-ионных аккумуляторов, а также позволяет исключить потери материала в процессе получения сложного оксида и образование оксидов азота.

Достигается вышеуказанный результат тем, что в предлагаемом способе получения катодного материала для литий-ионных аккумуляторов, включающем сжигание исходного реакционного раствора, содержащего смесь нитратов соответствующих металлов, и, по крайней мере, один гелирующий агент, в качестве которого используют глицин в количестве 200-400 г на 1000 г безводных нитратов, с последующими пропиткой полученного сложного оксида d-металлов соединениями лития, сушкой и отжигом; кроме того, в исходный реакционный раствор вводят лимонную кислоту в количестве 650-1000 г на 1000 г безводных нитратов, а также в качестве гелирующего агента кроме глицина используют мочевину в количестве 200-350 г на 1000 г безводных нитратов.

Отличительные признаки предлагаемого способа получения катодного материала для литий-ионных аккумуляторов, обеспечивающие соответствие его критерию «новизна», следующие: в исходный реакционный раствор вводят лимонную кислоту в количестве 650-1000 г на 1000 г безводных нитратов, а также в качестве гелирующего агента, кроме глицина, может использоваться мочевина в количестве 200-350 г на 1000 г безводных нитратов.

Для обоснования соответствия предлагаемого способа получения катодного материала для литий-ионного аккумулятора критерию «изобретательский уровень» был проведен анализ известных решений по литературным источникам. В настоящее время из патентной и научно-технической литературы не известен способ получения катодного материала для литий-ионных аккумуляторов, в котором гелирующий агент глицин или мочевину вносят в предлагаемых пределах, и процесс осуществляют в присутствии лимонной кислоты, дополнительно введенной в исходный раствор нитратов d-металлов. По результатам проведенного анализа не обнаружено технических решений, содержащих совокупность известных и отличительных признаков предлагаемого способа, дающих вышеуказанный технический результат. Поэтому, по мнению авторов, предлагаемый способ получения катодного материала для литий-ионного аккумулятора соответствует критерию «изобретательский уровень».

Исследования, проведенные авторами, позволили выявить эффективность дополнительного введения в исходную смесь нитратов кобальта, марганца, никеля и глицина (или мочевины) лимонной кислоты и ведение процесса в ее присутствии. Использование смеси аминокислоты (глицин), амида угольной кислоты (мочевина) и карбоновой кислоты (лимонная кислота) позволяет подавить выброс продукта в процессе нагревания исходной реакционной смеси, поскольку реакция в этом случае протекает спокойно за счет поглощения части тепловой энергии, выделяющейся при горении, на разложение соединений и комплексов лимонной кислоты. Кроме того, нагревание исходной смеси нитратов и глицина (мочевины) в присутствии лимонной кислоты позволяет гарантированно исключить выделение оксидов азота, поскольку они конвертируются в молекулярный азот. Исключение выделения оксидов азота и снижение выбросов продукта в процессе нагревания исходной реакционной смеси обеспечивает стабилизацию стехиометрического состава и однородность морфологии продукта, что в значительной степени улучшает электрохимические характеристики катодной активной массы литий-ионного аккумулятора. Кроме этого, значительно улучшаются условия труда и экологическая обстановка в целом. Уменьшение интенсивности процесса горения при образовании сложного оксида d-металлов позволяет провести увеличение количества сжигаемого исходного раствора, что снижает себестоимость производства. Существенным фактором, оказывающим влияние на характеристики конечного продукта, является соотношение глицин/лимонная кислота, карбамид/ лимонная кислота. Так, при введении лимонной кислоты менее 650 г на 1000 г безводных нитратов повышенная интенсивность процесса приводит к выбросу (потерям) продукта. При введении лимонной кислоты более 1000 г на 1000 г безводных нитратов конечный продукт содержит избыточное количество несгоревших углеродсодержащих компонентов, что отрицательно сказывается на составе и морфологии сложного оксида.

Уменьшение количества глицина или мочевины до количества менее 200 г на 1000 г безводных нитратов ухудшает условия горения и качество смешанного оксида марганца, никеля кобальта, а увеличение содержания глицина выше 400 г, а мочевины выше 350 г на 1000 г безводных нитратов резко увеличивает скорость реакции и может сопровождаться потерями порошка продукта.

Предлагаемый способ получения катодного материала может быть осуществлен следующим образом.

Готовят рабочий раствор нитратов соответствующих металлов, взятых в необходимом стехиометрическом соотношении. В раствор добавляют глицин в количестве 200-400 г или мочевину в количестве 200-350 г на 1000 г безводных нитратов и лимонную кислоту в количестве 650-1000 г на 1000 г безводных нитратов. Полученный раствор нагревают при температуре 150-250°С до сгорания формирующегося ксерогеля. Образовавшийся объемный порошок смешанного оксида подвергают смешению и усреднению, а затем пропитывают раствором соединения лития в расчете на необходимое по химическому составу материала соотношение катионов лития и d-металлов. Смесь перемешивают и сушат при температуре 200-250°С до сухого состояния, затем помещают в корундовые тигли и отжигают в течение 4-5 ч при температуре 600-800°С. После этого полученный продукт измельчают в мельнице из оргстекла при нагрузке 1:(1-3) в течение 2-3 часов и снова отжигают при температуре 850-950°С в течение 10-20 ч. Отожженный продукт снова измельчают до требуемого гранулометрического состава. Состав конечного продукта контролируют методами рентгеноструктурного и химического анализов.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Готовят рабочий раствор, растворяя в дистиллированной воде навески кобальта азотнокислого 6-водного, никеля азотнокислого 6-водного и марганца азотнокислого 6-водного, взятые в соотношении Co+2:Mn+2:Ni+2, равном 1:1:1. В раствор добавляют 200 г глицина и 650 г лимонной кислоты на 1000 г безводных нитратов. После чего раствор нагревают в реакторе из алюминиевого сплава при температуре 150-250°С до полного высыхания и последующего возгорания с получением черного объемного порошка, который переносят в эмалированный реактор и пропитывают раствором нитрата лития в количестве, необходимом для получения соотношения Li+1:Со+2:Mn+2:Ni+2 в смеси, равного 3:1:1:1. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 4-х часов при температуре 600°С. Отожженный продукт измельчают в мельнице из оргстекла при загрузке 1:3 в течение 2-х часов. После измельчения полупродукт снова помещают в тигли и проводят отжиг при температуре 950°С в течение 10 часов. Готовый продукт помещают в мельницу и измельчают при нагрузке 1:1 в течение 1 часа, после чего фасуют.

Содержание основного вещества 100%. Выход 99%. Получают порошок состава LiCo1/3Mn1/3Ni1/3O2 с нормальным распределением частиц с размерами 5-10 мкм и удельной поверхностью 1,6-1,9 м2/г.

Пример 2. Готовят рабочий раствор, растворяя в дистиллированной воде навески кобальта азотнокислого 6-водного, никеля азотнокислого 6-водного и марганца азотнокислого 6-водного, взятые в соотношении Co+2:Mn+2:Ni+2, равном 0,1:0,175:0,525. В раствор добавляют 260 г глицина и 700 г лимонной кислоты на 1000 г безводных нитратов. После чего раствор нагревают в реакторе из алюминиевого сплава при температуре 150-250°С до полного высыхания и последующего возгорания с получением черного объемного порошка, который переносят в эмалированный реактор и пропитывают раствором цитрата лития в количестве, необходимом для получения соотношения Li+1:Со+2:Ni+2:Mn+2 в смеси, равного 1,2:0,1:0,175:0,525. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 10 часов при температуре 850°С. Отожженный продукт измельчают в мельнице из оргстекла при загрузке 1:3 в течение 2-х часов. После измельчения полупродукт снова помещают в тигли и проводят отжиг при температуре 900°С в течение 20 часов. Готовый продукт помещают в мельницу и измельчают при нагрузке 1:1 в течение 1 часа, после чего фасуют.

Содержание основного вещества 100%. Выход 99%. Получают порошок номинального состава Li1,2 Ni0,175Co0,1Mn0,525O2 с нормальным распределением частиц с размерами 3-5 мкм и удельной поверхностью 0,9 м2/г.

Пример 3. Готовят рабочий раствор, растворяя в дистиллированной воде навески кобальта азотнокислого 6-водного, никеля азотнокислого 6-водного и марганца азотнокислого 6-водного, взятые в соотношении Co+2:Ni+2:Mn+2, равном 0,166:0,166:0,50. В раствор добавляют 400 г глицина и 1000 г лимонной кислоты на 1000 г безводных нитратов. После чего раствор нагревают в реакторе из алюминиевого сплава при температуре 150-250°С до полного высыхания и последующего возгорания с получением объемного порошка, который переносят в эмалированный реактор и пропитывают раствором нитрата лития в количестве, необходимом для получения соотношения Li+1:Со+2:Ni+2:Mn+2 в смеси, равного 1,166:0,166:0,166:0,50. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 10 часов при температуре 650°С. Отожженный продукт измельчают в мельнице из оргстекла при загрузке 1:3 в течение 2-х часов. После измельчения полупродукт снова помещают в тигли и проводят отжиг при температуре 900°С в течение 20 часов. Готовый продукт помещают в мельницу и измельчают при нагрузке 1:1 в течение 1 часа, после чего фасуют.

Содержание основного вещества 100%. Выход 99%. Получают порошок номинального состава Li1,166 Ni0,166Со0,166Mn0,50O2 с нормальным распределением частиц с размерами 6-7 мкм и удельной поверхностью 2,3 м2/г.

Пример 4. Готовят рабочий раствор, растворяя в дистиллированной воде навески никеля азотнокислого 6-водного и марганца азотнокислого 6-водного, взятые в соотношении Ni+2:Mn+2, равном 0,2:0,6. В раствор добавляют 250 г глицина и 800 г лимонной кислоты на 1000 г безводных нитратов. После чего раствор нагревают в реакторе из алюминиевого сплава при температуре 150-250°С до полного высыхания и последующего возгорания с получением тонкодисперсного объемного порошка, который переносят в эмалированный реактор и пропитывают раствором нитрата лития в количестве, необходимом для получения соотношения Li+1:Ni+2:Mn+2 в смеси, равного 1,2:0,2:0,6. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 5 часов при температуре 650°С. Отожженный продукт измельчают в мельнице из оргстекла при загрузке 1:3 в течение 2-х часов. После измельчения полупродукт снова помещают в тигли и проводят отжиг при температуре 900°С в течение 15 часов. Готовый продукт помещают в мельницу и измельчают при нагрузке 1:1 в течение 1 часа, после чего фасуют.

Содержание основного вещества 100%. Выход 99%. Получают порошок номинального состава Li1,2 Ni0,2Mn0,6O2 с нормальным распределением частиц с размерами 3-6 мкм и удельной поверхностью 1,5 м2/г.

Пример 5. Готовят рабочий раствор, растворяя в дистиллированной воде навески никеля азотнокислого 6-водного, кобальта азотнокислого 6-водного и алюминия азотнокислого 9-водного, взятые в соотношении Ni+2:Co+2:Al+3, равном 0,8:0,15:0.05. В раствор добавляют 350 г мочевины и 900 г лимонной кислоты на 1000 г безводных нитратов. После чего раствор нагревают в реакторе из алюминиевого сплава при температуре 150-250°С до полного высыхания и последующего возгорания с получением тонкодисперсного объемного порошка, который переносят в эмалированный реактор и пропитывают раствором нитрата лития в количестве, необходимом для получения соотношения Li+1:Ni+2:Со+2:А1+3 в смеси, равного 1:0,8:0,15:0,05. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 5 часов при температуре 700°С. Отожженный продукт измельчают в мельнице из оргстекла при загрузке 1:3 в течение 2-х часов. После измельчения полупродукт снова помещают в тигли и проводят отжиг при температуре 850°С в течение 20 часов. Готовый продукт помещают в мельницу и измельчают при нагрузке 1:1 в течение 1 часа, после чего фасуют.

Содержание основного вещества 100%. Выход 99%. Получают порошок состава Li Ni0,8Co0,15Al0,05O2 с нормальным распределением частиц с размерами 5-7 мкм и удельной поверхностью 0,8 м2/г.

Таким образом, авторами предлагается способ получения катодного материала для литий-ионных аккумуляторов, позволяющий улучшить стехиометрический состав, морфологию продукта и дающий стабильность электрохимических характеристик в качестве катодного материала для литий-ионных аккумуляторов. А кроме того, заявляемый способ обеспечивает исключение выбросов материала и диоксида азота в окружающую среду, что наряду с улучшением условий труда и экологической обстановки повышает производительность процесса.

Способ получения катодного материала для литий-ионных аккумуляторов, включающий сжигание исходного реакционного раствора, содержащего смесь нитратов соответствующих металлов и, по крайней мере, один гелирующий агент, в качестве которого используют глицин в количестве 200-400 г на 1000 г безводных нитратов, с последующими сушкой, пропиткой полученного сложного оксида d-металлов соединениями лития и отжигом, отличающийся тем, что в исходный реакционный раствор вводят лимонную кислоту в количестве 650-1000 г на 1000 г безводных нитратов, а также в качестве гелирующего агента кроме глицина может использоваться мочевина в количестве 200-350 г на 1000 г безводных нитратов.
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
12.12.2018
№218.016.a5a5

Устройство для контактной фотолитографии на полупроводниковой пластине с базовым срезом

Использование: для контактной фотолитографии на полупроводниковой пластине с базовым срезом. Сущность изобретения заключается в том, что устройство для контактной фотолитографии на полупроводниковой пластине с базовым срезом содержит столик с посадочным гнездом для размещения полупроводниковой...
Тип: Изобретение
Номер охранного документа: 0002674405
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a9cc

Клапан герметичного литий-ионного аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано в герметичных аккумуляторах для осуществления сброса (стравливания) давления газообразной среды из литий-ионных аккумуляторов. Технический результат, достигаемый в предлагаемом клапане герметичного литий-ионного...
Тип: Изобретение
Номер охранного документа: 0002675389
Дата охранного документа: 19.12.2018
14.03.2019
№219.016.df6e

Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя

Изобретение относится к солнечной энергетитке, в частности к способам изготовления фотопреобразователей на трехкаскадных эпитаксиальных структурах GaInP/Ga(In)As/Ge, выращенных на германиевой подложке. Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя...
Тип: Изобретение
Номер охранного документа: 0002681660
Дата охранного документа: 12.03.2019
20.05.2019
№219.017.5c42

Способ изготовления стеклянных пластин с утолщенным краем для фотопреобразователей космического назначения

Способ изготовления стеклянных пластин с утолщенным краем для фотопреобразователей космического назначения относится к электротехнике, в частности, к технологии изготовления солнечных элементов, а именно: к технологии изготовления радиационно-стойкого защитного стекла для фотопреобразователей....
Тип: Изобретение
Номер охранного документа: 0002687875
Дата охранного документа: 16.05.2019
13.06.2019
№219.017.8164

Установка контактной фотолитографии для полупроводниковых пластин с базовым срезом

Изобретение относится к устройствам, предназначенным для совмещения рисунков на фотошаблоне и полупроводниковой пластине в процессе ее фотолитографической обработки и может быть применено при изготовлении фотопреобразователей. Заявленная установка контактной фотолитографии для полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002691159
Дата охранного документа: 11.06.2019
24.10.2019
№219.017.d977

Способ изготовления фотопреобразователя на утоняемой германиевой подложке с выводом тыльного контакта на лицевой стороне полупроводниковой структуры

Изобретение относится к области конструкции и технологии оптоэлектронных приборов. В способе изготовления фотопреобразователя на утоняемой германиевой подложке с выводом тыльного контакта на лицевой стороне полупроводниковой структуры, согласно изобретению включающем: создание на германиевой...
Тип: Изобретение
Номер охранного документа: 0002703820
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d9bb

Способ изготовления фотопреобразователя на утоняемой германиевой подложке и устройство для его осуществления

Изобретение относится к солнечной энергетике, в частности, к технологии изготовления фотопреобразователей на трехкаскадных эпитаксиальных структурах GaInP/Ga(In)As/Ge. Способ изготовления фотопреобразователей на утоняемой германиевой подложке, включает создание на германиевой подложке с...
Тип: Изобретение
Номер охранного документа: 0002703840
Дата охранного документа: 22.10.2019
04.07.2020
№220.018.2e6d

Способ изготовления фотопреобразователя

Изобретение относится к полупроводниковой технике, а именно к способам изготовления трехкаскадных фотопреобразователей. Способ изготовления фотопреобразователя, согласно изобретению, включает формирование контактной металлизации на фронтальной и тыльной поверхностях многослойной...
Тип: Изобретение
Номер охранного документа: 0002725521
Дата охранного документа: 02.07.2020
Показаны записи 1-10 из 10.
10.09.2013
№216.012.678e

Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия

Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002492157
Дата охранного документа: 10.09.2013
12.01.2017
№217.015.5b77

Устройство химико-динамического травления германиевых подложек

Изобретение относится к области электрического оборудования, в частности к устройствам химико-динамического травления. Технический результат, достигаемый в предлагаемом устройстве химико-динамического травления германиевых подложек, заключается в упрощении конструкции и улучшении однородности...
Тип: Изобретение
Номер охранного документа: 0002589517
Дата охранного документа: 10.07.2016
29.12.2017
№217.015.f534

Способ получения сложного оксида лития и кобальта

Изобретение может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Для получения сложного оксида лития и кобальта состава LiCoO нагревают исходный раствор, содержащий азотнокислый кобальт, соединение лития и гелирующий агент. В качестве гелирующего агента...
Тип: Изобретение
Номер охранного документа: 0002637222
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.fbf1

Способ получения катодного материала для литий-ионных аккумуляторов

Изобретение относится к области химических технологий и может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Предлагается способ получения катодного материала состава LiNiCoMnO для литий-ионных аккумуляторов, включающий нагревание исходного раствора солей...
Тип: Изобретение
Номер охранного документа: 0002638316
Дата охранного документа: 13.12.2017
13.02.2018
№218.016.23d6

Солнечная батарея

Изобретение относится к устройствам для генерирования электрической энергии путем преобразования энергии светового излучения в электрическую энергию. В солнечной батарее согласно изобретению несущая панель состоит из лицевой и тыльной обшивок, изготовленных из листов упругого материала,...
Тип: Изобретение
Номер охранного документа: 0002642487
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.334d

Способ изготовления фотопреобразователя со встроенным диодом

Способ изготовления фотопреобразователя со встроенным диодом относится к солнечной энергетике, в частности к способам изготовления фотопреобразователей на трехкаскадных эпитаксиальных структурах GaInP/Ga(In)As/Ge, выращенных на германиевой подложке. Технический результат, получаемый...
Тип: Изобретение
Номер охранного документа: 0002645438
Дата охранного документа: 21.02.2018
23.02.2019
№219.016.c6ee

Способ получения порошка оксида кобальта

Изобретение может быть использовано для получения катодных и анодных материалов литий-ионных аккумуляторов. Cпособ получения порошка оксида кобальта CoO включает нагревание исходной смеси кобальта азотнокислого 6-водного и гелирующего агента с последующим отжигом полученного порошка. Исходная...
Тип: Изобретение
Номер охранного документа: 0002680514
Дата охранного документа: 21.02.2019
12.06.2020
№220.018.2645

Способ получения порошка простого или сложного оксида металла

Изобретение относится к области химических технологий и может быть использовано для получения порошков простых и сложных оксидов металлов для производства термобарьерных покрытий и спецкерамики. Способ получения порошка простого или сложного оксида металла включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002723166
Дата охранного документа: 09.06.2020
20.04.2023
№223.018.4e17

Способ получения алюмината лития

Изобретение относится к области химических технологий, а именно к получению алюмината лития, для использования в качестве матрицы топливных элементов с расплавленным карбонатом, в составе радиоустойчивой керамики и для повышения зарядно-разрядных характеристик композитных положительных...
Тип: Изобретение
Номер охранного документа: 0002793006
Дата охранного документа: 28.03.2023
21.05.2023
№223.018.68c2

Способ получения ванадата металла

Изобретение относится к химической технологии и может быть использовано для промышленного синтеза пигментов, диэлектрических и электродных материалов, а также катализаторов. Сначала готовят раствор источника ванадия путем растворения оксида ванадия в лимонной кислоте в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002794821
Дата охранного документа: 25.04.2023
+ добавить свой РИД