×
17.02.2018
218.016.2c2b

Результат интеллектуальной деятельности: РЕЗОРБИРУЕМЫЙ РЕНТГЕНОКОНТРАСТНЫЙ КАЛЬЦИЙ-ФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ КОСТНОЙ ПЛАСТИКИ

Вид РИД

Изобретение

№ охранного документа
0002643337
Дата охранного документа
31.01.2018
Аннотация: Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях. Рентгеноконтрастный инжектируемый кальций-фосфатный цемент для костной пластики содержит в качестве рентгеноконтрастного вещества оксид тантала TaO, дополнительно содержит монокальцийфосфат моногидрат (МКФМ), а в качестве затворяющей жидкости - смесь коллоидной силикатной суспензии (КСС) с полиэтиленгликолем (ПЭГ) при следующем соотношении компонентов, масс. %: сухая смесь: ТКФ - 55,1-62,9%; МКФМ - 29,9-34,1%; TaO - 3-15%; затворяющая жидкость: КСС- 90%, 95%; ПЭГ – 5%, 10%. Технический результат изобретения заключается в упрощении состава рентгеноконтрастного инжектируемого кальций-фосфатного цемента за счет обеспечения оптимальных показателей текучести и рентгеноконтрастности без введения специальных улучшающих добавок при одновременном повышении безопасности применения. 1 табл.

Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях, а также лечения трещин травматического генезиса с визуализацией процессов введения материала и последующего восстановления костной ткани. В травматологии и челюстно-лицевой хирургии в качестве костнозамещающих материалов применяют композиционные кальций-фосфатные цементы, содержащие рентгеноконтрастные вещества (РКВ).

Регенерация костной ткани при использовании кальций-фосфатных цементов происходит благодаря постепенной резорбции ортофосфатов кальция с вовлечением минеральных компонентов в остеогенез. Немаловажными достоинствами таких материалов являются биосовместимость и малая инвазивность при введении их с помощью шприца.

Кальций-фосфатные цементы получают при смешении порошков кислых и основных фосфатов кальция с затворяющей жидкостью. В ходе реакции твердые компоненты растворяются в жидкой фазе и в результате переосаждения формируются нейтральные фосфаты кальция, менее растворимые, чем исходные. Процесс переосаждения сопровождается образованием кристаллов апатитов и наблюдается как переход от пастообразного состояния в твердое, что используется при создании инъекционных составов для остеопластики. По составу апатиты разделяют на монетиты, брушиты и гидроксиапатиты. Гидроксиапатитовые цементы превосходят по прочности, однако монетитовые и брушитовые обладают более высокой кинетикой резорбции. Состав и свойства кальций-фосфатных цементов, в частности, зависят от выбора затворяющей жидкости. Обычно используют воду или буферные водные растворы (например, фосфорную кислоту, лимонную кислоту, фосфаты калия, натрия, магния, гидроксид кальция). Известны примеры использования в качестве затворяющей жидкости коллоидного диоксида кремния в виде суспензии.

Среди широко применяемых в рентгенологической практике рентгеноконтрастных соединений главное место занимают йодсодержащие вещества. Именно их используют для контрастирования сосудистых образований или закрытых полостей. Однако введение этих РКВ сопровождается рядом побочных эффектов. Отмечено их токсическое действие на кровь, почки, печень и щитовидную железу. Наиболее перспективными для рентгенодиагностики являются рентгеноконтрастные соединения тантала. Кроме своей нетоксичности эти РКВ обладают преимуществом - возможностью применения наряду с рентгенодиагностикой компьютерной томографии для исследования процессов биорезорбции, протекающих организме. Для данной методики используется рентгеновское излучение энергии 50-150 кэВ. Следует отметить, танталсодержащие РКВ имеют границу К-поглощения 67,4 кэВ, в то время как йодсодержащие - 30-40 кэВ.

Известен состав кальций-фосфатного цемента (Acta Biomateriala. 2010. Vol. 6. №8. Р. 3199-3207), содержащий в качестве рентгеноконтрастного средства основной салицилат висмута. К недостаткам этого цемента относится токсичность соединений висмута.

Кальций-фосфатный цемент, предложенный в (International Journal of Biomaterials. 2011: 232574), готовится из смеси порошков трикальцийфосфата кальция и монокальцийфосфата моногидрата, в которую после тщательного перемешивания вводится глицерин в качестве пластификатора. Отверждение происходит в присутствии фосфатного буфера при температуре 37°C. Для рентгеноконтрастности используют ZrO2. К недостаткам этого цемента относится то, что оксид циркония в организме не подвергается биодеградации и при миграции частиц ZrO2 в близлежащие к месту введения цемента ткани, особенно суставы, возможны механические повреждения последних из-за высокой твердости частиц.

В заявке на изобретение WO 2014016707, опубл. 30.01.2014, описан инъекционный цемент с рентгеноконтрастными веществами SrBr2 и SrI2. Наряду с резорбируемыми фосфатами кальция он содержит сульфаты и силикаты кальция, а также акрилаты, которые уменьшают биодоступность материала. Также известно, что стронций, являясь тяжелым металлом, представляет опасность для организма, так как способен накапливаться и вызывать тератогенное действие.

Известен состав цемента для остеопластики (US 7553362, опубл. 30.06.2009), в который для рентгеноконтрастности добавлен оксид тантала Ta2O5. Цемент готовится из тетракальцийфосфата, ангидрида дикальцийфосфата и коллоидной силикатной суспензии. Однако в процессе спекания при 1250°C конечным продуктом является нерезорбируемый силикат кальция.

Наиболее близким к заявляемому изобретению по технической сущности является состав костнозамещающего цемента (WO 2004050131, опубл. 17.06.2004) с использованием в качестве рентгеноконтрастного вещества BaSO4. Гидроксиапатитовый цемент получают при смешении порошков фосфатов кальция с затворяющей жидкостью, которой служат водные растворы фосфатов натрия, калия, аммония, магния или их смеси. Получаемый костнозамещающий цемент обеспечивает необходимую прочность, однако инъекционная текучесть композита чувствительна к составу. Только добавка BaSO4 из всех приведенных в этом патенте РКВ улучшает инъекционную текучесть, что, однако, экономически нецелесообразно для достижения оптимальной вязкости состава.

Улучшения рентгеноконтрастных свойств описанного кальций-фосфатного цемента добиваются включением в состав, как минимум, одного вещества, относящегося к неорганическим или органическим соединениям ряда металлов. Кроме того, значение рН при смешении компонентов достигает 12 и медленно уменьшается при переходе из пасты в цементный камень, что приводит к химическому ожогу близлежащих тканей.

Задачей предлагаемого изобретения является создание рентгеноконтрастного инжектируемого костнозамещающего кальций-фосфатного цемента, простого в приготовлении, удобного при введении с минимальной токсичностью для организма.

Технический результат предлагаемого изобретения заключается в упрощении его состава за счет обеспечения оптимальных показателей текучести и рентгеноконтрастности без введения специальных улучшающих добавок при одновременном повышении безопасности его применения.

Указанный технический результат достигают рентгеноконтрастным инжектируемым кальций-фосфатным цементом для костной пластики, содержащим трикальцийфосфат (ТКФ), рентгеноконтрастное вещество и затворяющую жидкость. В отличие от известного, в качестве рентгеноконтрастного вещества цемент содержит оксид тантала Ta2O5, дополнительно содержит монокальцийфосфат моногидрат (МКФМ), а в качестве затворяющей жидкости - смесь коллоидной силикатной суспензии (КСС) с полиэтиленгликолем (ПЭГ) при следующем соотношении компонентов, масс. %:

сухая смесь:

ТКФ 55,1-62,9%
МКФМ 29,9-34,1%
Ta2O5 3-15%

затворяющая жидкость:

КСС 90,95%
ПЭГ 5,10%

Оксид тантала Ta2O5 имеет более высокое К-поглощение по сравнению с BaSO4 и не требует введения улучшающих рентгеноконтрастность веществ, при этом его добавка не сказывается на механических свойствах используемого кальций-фосфатного цемента, такие как прочность конечного продукта, и не влияет на вязкость инъекционной цементной пасты.

Использование коллоидного диоксида кремния в качестве затворяющей жидкости приводит к тому, что реакция переосаждения фосфатов кальция начинается при значениях рН около 9, полностью завершаясь при физиологических значениях рН. Это минимизирует дополнительное травмирование окружающих имплантат тканей организма.

Цемент готовят следующим образом.

Трикальцийфосфат Ca3(PO4)2 и монокальцийфосфат моногидрат Ca(H2PO4)2⋅H2O смешивают в отношении 3:2, добавляют оксид тантала Ta2O5 и затворяющую жидкость, а именно коллоидную силикатную суспензию SIGMA-ALDRICH, в которую добавлен пластификатор полиэтиленгликоль ПЭГ-35(1500). В результате получают цементную пасту. ПЭГ вводят в затворяющую жидкость для свободного прохождения цементной пасты через иглу для инъекций и для пролонгирования сроков ее схватывания. Процесс отверждения происходит при температуре 25°C и 70% относительной влажности. Время схватывания цемента регулируется количеством ПЭГ, а также зависит от количества оксида тантала в смеси компонентов и колеблется от 5 до 20 мин. Время полного затвердевания цемента около трех часов, прочность на сжатие 2-4 МПа. Фазовый состав цемента - гидроксиапатит, брушит, монетит, оксид тантала.

В таблице 1 приведены характеристики кальций-фосфатных цементов в зависимости от количества в образцах оксида тантала, ПЭГ и соотношения твердой и жидкой фаз.

* - верхний предел съемки рентгеноконтрастности вещества.

Костные ткани имеют собственную рентгеноконтрастность, которая в зависимости от формы, строения, функции и развития варьирует в диапазоне от 350 до 1250 Hu. Из таблицы 1 видно, что для визуализации имплантата достаточным является 3% содержание Ta2O5 в цементе, а добавление оксида тантала свыше 15% нецелесообразно по экономическим соображениям.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1 (таблица 1, состав №8). Сухие компоненты 0,5254 г ТКФ; 0,2846 г МКФМ; 0,09 г Ta2O5 смешивают и добавляют 0,65 мл 5% раствора ПЭГ в КСС. Массу тщательно перемешивают до получения цементной пасты, которая через 5 мин схватывается в цементный камень. Рентгеноконтрастность по шкале Хаунсфилда (Hu) 2766 ед.

Пример 2 (таблица 1, состав №7). Сухие компоненты 0,5546 г ТКФ; 0,3004 г МКФМ; 0,045 г Ta2O5 смешивают и добавляют 0,75 мл 10% раствора ПЭГ в КСС. Массу тщательно перемешивают до получения цементной пасты, которая через 10 мин схватывается в цементный камень. Рентгеноконтрастность по шкале Хаунсфилда (Hu) 1945 ед.

Пример 3 (таблица 1, состав №5). Сухие компоненты 0,5663 г ТКФ; 0,3067 г МКФМ; 0,027 г Ta2O5 смешивают и добавляют 0,75 мл 10% раствора ПЭГ в КСС. Массу тщательно перемешивают до получения цементной пасты, которая через 9 мин схватывается в цементный камень. Рентгеноконтрастность по шкале Хаунсфилда (Hu) 1511 ед.

Источник поступления информации: Роспатент

Показаны записи 91-100 из 126.
15.10.2019
№219.017.d5c4

Способ вскрытия флюорита

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида...
Тип: Изобретение
Номер охранного документа: 0002702883
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d6ec

Способ получения защитных антикоррозионных покрытий на сплавах алюминия со сварными швами

Изобретение относится к способам получения защитных антикоррозионных покрытий на изделиях, конструкциях и сооружениях со сварными соединениями, выполненных из сплавов алюминия, преимущественно конструкционных, которые предназначены для эксплуатации в неблагоприятных условиях под воздействием...
Тип: Изобретение
Номер охранного документа: 0002703087
Дата охранного документа: 15.10.2019
22.10.2019
№219.017.d8d3

Анодный материал для литий-ионного аккумулятора и способ его получения

Изобретение может быть использовано при получении анодного материала литий-ионных аккумуляторов, применяемых для энергообеспечения крупногабаритных энергоустановок гибридного и электрического автотранспорта, систем бесперебойного электроснабжения, робототехнических средств и автономных...
Тип: Изобретение
Номер охранного документа: 0002703629
Дата охранного документа: 21.10.2019
30.10.2019
№219.017.dbc1

Способ формирования композиционных покрытий на магнии

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002704344
Дата охранного документа: 28.10.2019
29.11.2019
№219.017.e781

Способ получения супергидрофобных покрытий с антиобледенительными свойствами на алюминии и его сплавах

Изобретение относится к получению на поверхности алюминия и его сплавов супергидрофобных покрытий, обладающих влагозащитными и антиобледенительными свойствами, и может быть использовано для обеспечения долговременной защиты от гололедно-изморозевых отложений и сопутствующей коррозии различных...
Тип: Изобретение
Номер охранного документа: 0002707458
Дата охранного документа: 26.11.2019
08.12.2019
№219.017.eaee

Способ получения гидрофобного нефтесорбента и устройство для его осуществления

Группа изобретений относится к производству дисперсных нефтесорбентов. Камеру гидрофобизации с загруженным пористым алюмосиликатным материалом вакуумируют до остаточного давления 10-60 кПа, обрабатывают материал в среде перегретого водяного пара. Температуру повышают до 500-550°С, поддерживая...
Тип: Изобретение
Номер охранного документа: 0002708309
Дата охранного документа: 05.12.2019
08.12.2019
№219.017.eb39

Способ получения гидрофобного нефтесорбента и устройство для его осуществления

Группа изобретений относится к производству дисперсных сорбентов нефтепродуктов. Камеру гидрофобизации с загруженным пористым алюмосиликатным материалом вакуумируют до остаточного давления 20-30 кПа, обрабатывают материал в среде перегретого водяного пара. Температуру повышают до 280-310°С,...
Тип: Изобретение
Номер охранного документа: 0002708362
Дата охранного документа: 05.12.2019
31.12.2020
№219.017.f45f

Способ получения композиционного материала для биорезорбируемого магниевого имплантата

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии....
Тип: Изобретение
Номер охранного документа: 0002710597
Дата охранного документа: 30.12.2019
06.02.2020
№220.017.ffb5

Способ дезактивации отработанных ионообменных смол, загрязнённых радионуклидами цезия и кобальта

Изобретение относится к атомной энергетике. Способ дезактивации отработанной ионообменной смолы, загрязненной радионуклидами, включает обработку высокощелочным рН≥13 дезактивирующим раствором, содержащим 1-3 моль/л ионов натрия, очистку дезактивирующего раствора от радионуклидов цезия на...
Тип: Изобретение
Номер охранного документа: 0002713232
Дата охранного документа: 04.02.2020
13.02.2020
№220.018.01ee

Рентгеноконтрастное биоактивное стекло и способ его получения

Изобретение относится к медицине, а именно к композиции рентгеноконтрастного биостекла и способу ее получения, и может быть использовано в ортопедии и челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия или в стоматологии в качестве добавки в пломбировочный материал, и...
Тип: Изобретение
Номер охранного документа: 0002714035
Дата охранного документа: 11.02.2020
Показаны записи 71-75 из 75.
12.04.2023
№223.018.48b2

Способ получения боратов лантана, легированных европием и тербием

Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь...
Тип: Изобретение
Номер охранного документа: 0002761209
Дата охранного документа: 06.12.2021
21.05.2023
№223.018.6952

Способ лечения аденокарциномы эрлиха

Изобретение относится к области медицины, а именно к экспериментальной онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Вводят в опухоль синтезированные микрочастицы биостекла «Bioglass 45S5». Затем выполяют локальное облучение...
Тип: Изобретение
Номер охранного документа: 0002794457
Дата охранного документа: 18.04.2023
03.06.2023
№223.018.7603

Способ очистки зольного графита

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также...
Тип: Изобретение
Номер охранного документа: 0002777765
Дата охранного документа: 09.08.2022
17.06.2023
№223.018.7dc0

Способ лечения аденокарциномы эрлиха методом лучевой терапии

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным...
Тип: Изобретение
Номер охранного документа: 0002781902
Дата охранного документа: 19.10.2022
17.06.2023
№223.018.80d7

Способ получения биостекла, легированного диоксидом циркония

Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002765471
Дата охранного документа: 31.01.2022
+ добавить свой РИД