×
13.02.2018
218.016.29ae

Результат интеллектуальной деятельности: МИКРОСФЕРИЧЕСКАЯ ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области диффузионно-мембранных технологий, направлено на получение селективных мембран и может быть использовано в газоперерабатывающей, нефтехимической, химической и других отраслях промышленности для извлечения и концентрирования целевых компонентов, например гелия и водорода, из многокомпонентной газовой смеси. Описана микросферическая газопроницаемая мембрана на основе полых алюмосиликатных микросфер, при этом оболочка микросфер содержит включения кристаллитов муллита. Микросферическую газопроницаемую мембрану получают выделением узких морфологически однородных фракций полых неперфорированных алюмосиликатных микросфер с содержанием АlО 21-38 мас.% и SiO 55-67 мас.%, со средней толщиной сплошной или пористой оболочки 2-3 и 5-10 мкм соответственно, из концентратов ценосфер летучих зол от сжигания угля с использованием технологических стадий гранулометрической, магнитной, гидростатической сепарации и аэродинамического разделения. Узкие фракции ценосфер подвергают термообработке при 980-1000°С в течение 2-3 ч с последующим гидростатическим отделением разрушенных глобул. Изобретение обеспечивает повышение газопроницаемости в отношении гелия. 2 н. и 3 з.п. ф-лы, 5 пр., 2 табл., 5 ил.

Изобретение относится к области диффузионно-мембранных технологий, направлено на получение селективных мембран и может быть использовано в газоперерабатывающей, нефтехимической, химической и других отраслях промышленности для извлечения и концентрирования целевых компонентов, например гелия и водорода, из многокомпонентной газовой смеси.

В последние годы мембранные технологии разделения газовых смесей представляют собой устойчиво развивающееся направление [Дытнерский Ю.И., Брыков В.П., Карманов Г.Г. Мембранное разделение газов. М.: Химия, 1991, 342 c.], требующее создания селективных мембран, обладающих высокой проницаемостью, повышенной механической прочностью, термической и химической стойкостью. Мембраны изготавливаются из полимерных и неорганических материалов в виде плоских, трубчатых, спиральных элементов [Мулдер М. Введение в мембранную технологию. М.: Мир, 1999, 514 с.]. Повреждение такого рода конструкций в процессе их эксплуатации приводит к резкому снижению качества разделения смесей.

Повышение качества и надежности процесса разделения газовых смесей достигается при использовании полых замкнутых мембранных элементов. В данном направлении используются дорогостоящие синтетические стеклянные микросферы на основе боросиликатного стекла [Pat. US №6231642, B01D 53/22, С01В 3/50, 15.05.2001; Pat. US №7666807, C03B 37/016, 23.02.2010], которые для улучшения проницаемости подвергают дополнительным обработкам (кислотное травление, допирование редкоземельными и переходными металлами).

Альтернативной заменой синтетическим микросферам являются полые алюмосиликатные микросферы летучих зол (ценосферы) [Медведев Е.Ф. // Стекло и керамика. 2002. №11. С.12-15; Пат. РФ №2291740, B01D 69/12, 20.01.2007; Пат. РФ №2377176, С01В 3/00, F17C 11/00, 27.12.2009]. Однако известные способы ограничиваются использованием широких фракций концентратов ценосфер, которые неоднородны по гранулометрическому, химическому, фазовому составам, морфологии, толщине и структуре оболочки. Указанные аналоги не содержат информацию о численных значениях параметра проницаемости в широком температурном интервале, что не позволяет достоверно оценить их диффузионные свойства.

Наиболее близкой по совокупности признаков к заявляемому изобретению является работа, выбранная в качестве прототипа, по определению газовой проницаемости фракции стеклянных микросфер размером 40-45 мкм с толщиной стенки ~1.0 мкм следующего состава (моль. %): SiO2 - 79.0, CaO - 10.0, Na2O - 6.8, В2О3 - 2.0, ZnO - 0.8, MgO - 0.5, P2O3 - 0.3, Al2O3 - 0.2, K2O - 0.1 [Tsugawa R.Т., Моеn I., Roberts P.E., Souers P.C. // J. Appl. Phys. 1976. V.47. No.5. P.1987-1993]. Полученное при 25°С экспериментальное значение проницаемости микросфер в отношении гелия составило 2.6·10-14 моль/(с·г·Па). Недостаточная газопроницаемость синтетических стеклянных микросфер приведенного состава является недостатком и ограничивает их использование в качестве микросферических мембран.

Изобретение решает задачу получения микросферических мембран пониженной стоимости и повышенной газопроницаемости в отношении гелия.

Для решения поставленной задачи предложена микросферическая газопроницаемая мембрана на основе полых алюмосиликатных микросфер со стеклокристаллической оболочкой, при этом стеклокристаллическая оболочка микросфер содержит включения кристаллитов муллита.

Содержание кристаллической фазы муллита с размером кристаллитов 100-227 нм составляет 1-38 мас.%.

Содержание кристаллической фазы муллита с размером кристаллитов 17-33 нм составляет 3-24 мас.%.

Задача достигается тем, что для получения микросферических газопроницаемых мембран используют узкие морфологически однородные фракции полых неперфорированных алюмосиликатных микросфер (ценосфер) с содержанием Al2O3 21-38 мас.% и SiO2 55-67 мас.%, со средней толщиной сплошной или пористой оболочки, составляющей 2-3 и 5-10 мкм соответственно, которые выделяют из концентратов ценосфер летучих зол от сжигания угля с использованием технологических стадий гидродинамической, гранулометрической, магнитной сепарации и аэродинамического разделения.

Выделенные узкие морфологически однородные фракции полых неперфорированных ценосфер подвергают дополнительной термообработке при 980-1000°С в течение 2-3 ч с последующим гидростатическим отделением разрушенных ценосфер.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.

Сущность изобретения заключается в следующем.

Известно, что силикатные стекла сочетают высокую проницаемость для гелия и водорода с крайне низкой диффузионной проницаемостью в отношении более тяжелых газов (кислород, азот, метан), причем селективность разделения газовых смесей достигает значений 105-106. Это является одним из существенных технологических преимуществ силикатных стеклянных мембран над полимерными [Николаев Н.И. Диффузия в мембранах. - М.: Химия, 1980, 232 с.].

Для стеклокристаллических материалов диффузия гелия в зависимости от температуры протекает сквозь анионную решетку стекла либо вдоль межфазных границ «кристалл - стекло». Для образцов кварцевого стекла, содержащего кристаллиты кристобалита, при температуре выше 300°С предпочтительной является решеточная диффузия гелия со значением энергии активации 24 кДж/моль; в низкотемпературном интервале 0-110°С преобладающей становится диффузия по межфазным границам «кристобалит - стекло», для которой энергия активации составляет 18 кДж/моль [Беррер Р. Диффузия в твердых телах. М.: Химия, 1948, 504 с.].

При создании селективно-проницаемых мембран для разделения газовых смесей, а также сорбции и хранения целевых компонентов, например гелия и водорода, особый интерес представляют полые микросферы с тонкой стеклокристаллической оболочкой, обеспечивающей повышенную проницаемость и механическую прочность. В качестве таких микросферических мембран могут быть использованы стеклокристаллические ценосферы летучих зол.

Концентраты ценосфер летучих зол от сжигания угля представляют собой неоднородную смесь полых сфер размером 5-500 мкм. По химическому составу ценосферы являются многокомпонентными системами SiO2-Al2O3-Fe2O3-CaO-MgO-Na2O-К2О-TiO2 с содержанием алюмосиликатной стеклофазы от 50 до 90%. На поверхности и в объеме стеклообразной матрицы глобул присутствуют микро- и наноразмерные кристаллиты кварца, муллита, ферритовых шпинелей, кальцита [Кизильштейн Л.Я., Дубов И.В., Шпицглуз А.Л. и др. Компоненты зол и шлаков ТЭС. - М.: Энергоатомиздат, 1995, 176 с.]. Внешняя и внутренняя поверхности ценосфер покрыты наноразмерной пленкой толщиной 30-50 нм [Anshits N.N., Mikhailova О.A., Salanov А.N. et al. // Fuel. 2010. V.89. No.8. P.1849-1862].

Из концентратов ценосфер летучих зол от сжигания углей разных источников могут быть получены узкие фракции неперфорированных ценосфер низкой плотности определенного состава, морфологии и толщины оболочки [Anshits N.N., Mikhailova О.А., Salanov A.N. et al. // Fuel. 2010. V.89. No.8. P.1849-1862]. В зависимости от состава и размера можно выделить два основных морфологических типа ценосфер: с тонкой сплошной оболочкой и толстой пористой оболочкой, содержащей большое количество газовых включений. Химический состав узких фракций ценосфер (содержание Al2O3 21-38 мас.% и SiO2 55-67 мас.%) свидетельствует о возможности получения на их основе в условиях термообработки, приводящей к раскристаллизации стеклофазы, микросферических материалов с высоким содержанием фазы муллита, способного армировать игольчатыми кристаллами оболочку ценосфер, создавая межфазные границы, и тем самым повышать ее газопроницаемость в отношении гелия и водорода. Это позволит использовать узкие фракции ценосфер в качестве микросферических газопроницаемых мембран для селективного выделения гелия и водорода.

Сущность изобретения демонстрируется следующими примерами, таблицами и иллюстрациями.

На Фиг.1 изображена гранула микросферической мембраны крупностью - 0.063+0.05 мм (1) и ее сплошная оболочка (2, гранула искусственно разрушена).

На Фиг.2 изображена гранула микросферической мембраны крупностью - 0.16+0.125 мм (1) и ее пористая оболочка (2, гранула искусственно разрушена).

На Фиг.3 изображена гранула микросферической мембраны, содержащая кристаллиты муллита, крупностью - 0.063+0.05 мм (1) и участок ее внешней поверхности (2).

На Фиг.4 изображена гранула микросферической мембраны, содержащая кристаллиты муллита крупностью - 0.16+0.125 мм (1) и участок ее внутренней поверхности (2, гранула искусственно разрушена).

На Фиг.5 изображены ДСК и ТГ кривые узкой фракции ценосфер серии М размером - 0.063+0.05 мм (скорость нагрева 10°С/мин).

Пример 1.

В качестве сырья для получения микросферических газопроницаемых мембран используют концентрат ценосфер Новосибирской ТЭЦ-5 (серия H), сжигающей угли Кузнецкого бассейна при температуре в ядре факела 1500°С. Концентрат подвергают разделению с использованием технологической схемы [Anshits N.N., Mikhailova О.А., Salanov А.N. et al. // Fuel. 2010. V.89. No.8. P.1849-1862}, включающей стадии гидродинамического разделения по плотности, гранулометрической, магнитной и аэродинамической сепарации. В результате получают узкие фракции неперфорированных ценосфер, которые характеризуют набором параметров, включающим средний диаметр глобул, распределение по размерам, содержание глобул определенного морфологического типа, среднюю толщину оболочки, насыпную плотность, химический и фазовый составы.

Для получения микросферических мембран с высокой газовой проницаемостью выбирают узкие фракции ценосфер, отвечающие следующим критериям: морфологическая однородность, определяющаяся преобладающим количеством глобул определенного типа, средняя толщина сплошной (Фиг.1) или пористой оболочки (Фиг.2) ценосфер, составляющая 2-3 и 5-10 мкм соответственно, и ее химический состав (содержание Al2O3 21-38 мас.%), свидетельствующий о возможности получения высокого содержания фазы муллита в условиях раскристаллизации стеклофазы.

В качестве примера в таблице 1 приведены характеристики узких фракций ценосфер серии Н размером -0.063+0.05 (маркировка Н-0.08 -0.063+0.05) и -0.16+0.125 мм (маркировка НМ-Н-1А -0.16+0.125), соответствующих вышеуказанным критериям и выбранных в качестве образцов микросферических мембран.

С помощью полнопрофильного рентгеноструктурного анализа с применением метода Ритвелда и метода минимизации производной разности [Rietveld Н.М. //J. Appl. Cryst. 1969. V.2. No. 2. P. 65-71; Solovyov L.A.// J. Appl. Cryst. 2004. V.37. No.5. P.743-749] определяют, что в исходных образцах серии Н при содержании Al2O3 22-25 мас.% наблюдается незначительное количество (1.3-3.7 мас.%) кристаллической фазы муллита (0) и 3.0-5.8 мас.% фазы кварца.

Газовую проницаемость образцов микросферических мембран изучают в вакуумной статической установке в режиме диффузии гелия из объема реактора внутрь ценосфер в интервале температур 23-350°С и давлении 3-9.5·104 Па. Определение величины проницаемости основано на измерении падения давления во времени после перепуска газа в реактор, заполненный ценосферами. Для расчета проницаемости используют уравнение поглощения газов ценосферами в виде , где: K - коэффициент проницаемости, моль·м/(с·м2·Па); m - масса образца, г; Sуд - удельная поверхность диффузии образца, м2/г; d - толщина оболочки, м; Q - проницаемость, моль/(с·г·Па); Pout и Pin - давления гелия снаружи и внутри частиц в момент времени t, Па.

Полученные численные значения проницаемости микросферических мембран на основе узких фракций ценосфер серии Н размером -0.063+0.05 и -0.16+0.125 мм приведены в таблице 2. Анализ таблицы показывает, что заявляемые микросферические мембраны при температуре 25°С уступают по гелиевой проницаемости выбранному прототипу. Высокие значения энергии активации 35-50 кДж/моль свидетельствуют о решеточной диффузии гелия, для которой предпочтительной является область температур выше 300°С. Так, при 370°С гелиевая проницаемость образцов Н-0.08 -0.063+0.05 и НМ-Н-1А -0.16+0.125 составила 0.5-1.2·1011 моль/(с·г·Па). Такие диффузионные характеристики определяют перспективность использования заявляемых образцов в качестве газовых микроконтейнеров для хранения гелия и водорода.

Пример 2.

Из концентрата ценосфер Московской ТЭЦ-22 (серия М), сжигающей каменные угля Кузнецкого бассейна при температуре в ядре факела 1650°С, выделяют и характеризуют, как указано в примере 1, узкие фракции неперфорированных ценосфер.

В соответствие с перечисленными в примере 1 критериями выбирают наиболее перспективные образцы для получения мембран с высокой проницаемостью. В качестве примера в таблице 1 приведены характеристики узких фракций ценосфер серии М размером -0.063+0.05 (маркировка НМ-М-5А -0.063+0.05, Фиг.3) и -0.16+0.125 мм (маркировка НМ-М-1А -0.16+0.125, Фиг.4).

Как описано в примере 1, определяют, что в исходных образцах серии М при содержании Al2O3 25-31 мас.% количество фазы муллита (0) составляет 8.2-8.8 мас.% при незначительном содержании фазы кварца (2.0-2.4 мас.%).

Газовую проницаемость образцов микросферических мембран определяют, как описано в примере 1. Анализ таблицы 2 показывает, что заявляемые микросферические мембраны, полученные на основе узких фракций ценосфер серии М, не уступают по гелиевой проницаемости выбранному прототипу в случае использования образца НМ-М-5А -0.063+0.05 и превосходят его в 2 раза в случае использования образца НМ-М-1А -0.16+0.125.

Пример 3.

Из концентрата ценосфер Рефтинской ГРЭС (серия R), сжигающей каменные угля Экибастузского бассейна при температуре в ядре факела 1600°С, выделяют и характеризуют, как указано в примере 1, узкие фракции неперфорированных ценосфер.

В соответствие с перечисленными в примере 1 критериями получения на основе ценосфер мембран с высокой проницаемостью выбирают наиболее перспективные образцы серии R (таблица 1, маркировка HM-R-5A -0.063+0.05 и HM-R-5A -0.16+0.125).

Как описано в примере 1, определяют, что в исходных образцах серии R при содержании Al2O3 34-35 мас.% количество фазы муллита (0) составляет 30.1-38.4 мас.% при незначительном содержании фазы кварца (1.3-1.6 мас.%).

Газовую проницаемость образцов микросферических мембран определяют, как описано в примере 1 (таблица 2). Заявляемые микросферические мембраны, полученные на основе узких фракций ценосфер серии R, превосходят по гелиевой проницаемости выбранный прототип в 2-2.4 раза.

Пример 4.

Химический состав узких фракций ценосфер (содержание Al2O3 21-38 мас.%) свидетельствует о возможности увеличения содержания фазы муллита в условиях равновесной кристаллизации стеклофазы. Методом дифференциального термического анализа устанавливают, что кристаллизация муллита в оболочке ценосфер происходит в температурном интервале 980-1000°С. В качестве подтверждения на Фиг.5 представлены ДСК и ТГ кривые фракции ценосфер серии М размером -0.063+0.05 мм.

С целью получения на основе ценосфер микросферических мембран с оболочкой, обладающей повышенной газопроницаемостью, узкую фракцию ценосфер серий М размером -0.063+0.05 мм, полученную по примеру 2, подвергают термообработке при 1000°С в течение 1, 2 и 3 ч. Методом количественного рентгенофазового анализа, как указано в примере 1, определяют, что доля стеклофазы в раскристаллизованных ценосферах уменьшается за счет образования дополнительной фазы муллита (I), количество которой в зависимости от времени термообработки составляет 21.4, 22.6 и 24.1 мас.% соответственно.

Пример 5.

Узкие фракции ценосфер серий М и R размером -0.063+0.05 и -0.16+0.125 мм, полученные по примеру 2 и 3, подвергают термообработке при 1000°С в течение 3 ч. Для удаления разрушенных ценосфер проводят гидростатическое разделение с предварительным вакуумированием. Как описано в примере 1, определяют фазовый состав и газовую проницаемость образцов. Полученные численные значения приведены в таблице 2. Анализ таблицы показывает, полученные по заявляемому способу микросферические мембраны на основе узких фракций ценосфер после термообработки содержат дополнительную фазу муллита (I) в количестве 3-24 мас.%, отличающуюся от исходной фазы муллита (0) меньшим размером кристаллитов, и характеризуются повышенной газопроницаемостью в отношении гелия по сравнению с выбранным прототипом в 5-10 раз. Низкие значения энергии активации, полученные для образцов микросферических мембран с высоким содержанием кристаллической фазы муллита, свидетельствуют о преобладающей диффузии гелия по межфазным границам «муллит - стеклофаза».

Таким образом, приведенные примеры, таблицы и иллюстрации подтверждают возможность получения газопроницаемых микросферических мембран на основе узких фракций неперфорированных ценосфер определенного состава, структуры, морфологии и толщины оболочки, не уступающих по проницаемости дорогостоящим синтетическим стеклянным микросферам, в некоторых случаях превосходя ее в 2 раза.

Термообработка образцов приводит к увеличению их газовой проницаемости в 3-13 раз за счет образования в структуре оболочки мелких кристаллитов муллита, обеспечивающих развитие межфазных границ для селективной диффузии гелия.


МИКРОСФЕРИЧЕСКАЯ ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
МИКРОСФЕРИЧЕСКАЯ ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
МИКРОСФЕРИЧЕСКАЯ ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
МИКРОСФЕРИЧЕСКАЯ ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
МИКРОСФЕРИЧЕСКАЯ ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
10.02.2014
№216.012.9ebd

Способ получения медного покрытия на керамической поверхности газодинамическим напылением

Изобретение относится к способу получения адгезионно-прочных медных покрытий на керамической поверхности с использованием газодинамического напыления. Проводят предварительное напыление подслоя из оксида меди (1) с последующим напылением медного покрытия и термическую обработку покрытия....
Тип: Изобретение
Номер охранного документа: 0002506345
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a5c9

Способ разделения многокомпонентной парогазовой смеси

Способ разделения многокомпонентной парогазовой смеси относится к химической, нефтехимической, газовой промышленности и может быть использован при извлечении или концентрировании одного или нескольких целевых компонентов из многокомпонентной парогазовой смеси, например гелия из природного газа....
Тип: Изобретение
Номер охранного документа: 0002508156
Дата охранного документа: 27.02.2014
10.02.2015
№216.013.229b

Способ получения магнитного аффинного сорбента для выделения рекомбинантных белков

Изобретение относится к получению сорбентов для выделения и детекции рекомбинантных белков, содержащих полигистидиновые последовательности. Предложен способ получения магнитного аффинного сорбента для выделения рекомбинантных белков. Способ включает нанесение пористого кремнеземного слоя на...
Тип: Изобретение
Номер охранного документа: 0002540312
Дата охранного документа: 10.02.2015
13.01.2017
№217.015.6b19

Способ лечения артериальной гипертензии путем ингаляционного введения аэрозоля гипотензивного препарата

Изобретение относится к медицине, в частности к способу лечения артериальной гипертензии у млекопитающих, включая людей, и может быть использовано для экстренного лечения острых гипертонических состояний, например гипертонического криза. Согласно предлагаемому способу осуществляют ингаляционное...
Тип: Изобретение
Номер охранного документа: 0002593016
Дата охранного документа: 27.07.2016
19.01.2018
№218.016.0901

Дисковый насос трения для перекачки жидкостей

Изобретение относится к дисковым насосам трения для перекачки жидкостей, в частности в кардиохирургии для создания вспомогательного насоса поддержки кровообращения для лечения терминальной сердечной недостаточности. Насос содержит корпус, внутри которого установлен с возможностью вращения пакет...
Тип: Изобретение
Номер охранного документа: 0002631854
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.1bcb

Способ выделения растворенных газов из перекачиваемой жидкости и устройство для его реализации (варианты)

Изобретение относится к насосостроению и предназначено для перекачки различных сред, например, для выделения воздуха, растворенного в воде. Выделение растворенных газов из перекачиваемой жидкости методом понижения давления в потоке газа с использованием явления кавитации выполняется благодаря...
Тип: Изобретение
Номер охранного документа: 0002636732
Дата охранного документа: 27.11.2017
Показаны записи 11-20 из 23.
17.04.2019
№219.017.15f9

Способ переработки нефтяных остатков в дистиллятные фракции

Изобретение относится к области нефтепереработки, а именно к переработке тяжелых нефтей в процессе низкотемпературного инициированного крекинга, и может быть использовано для увеличения выхода дистиллятных моторных топлив. Описан способ переработки нефтяных остатков в дистиллятные фракции путем...
Тип: Изобретение
Номер охранного документа: 0002375412
Дата охранного документа: 10.12.2009
17.04.2019
№219.017.15fd

Способ увеличения выхода дистиллятных фракций из тяжелых нефтей

Изобретение относится к области нефтепереработки, а именно к переработке тяжелых нефтей в процессе низкотемпературного инициированного крекинга, и может быть использовано для увеличения выхода дистиллятных моторных топлив. Способ увеличения выхода бензиновых и дистиллятных фракций из тяжелых...
Тип: Изобретение
Номер охранного документа: 0002375410
Дата охранного документа: 10.12.2009
18.05.2019
№219.017.5a4b

Способ сварки материалов

Изобретение относится к способу сварки материалов высокоэнергетическими источниками излучения, например лазерным, плазменным или электроннолучевым, и может быть использован для сварки изделий из тонколистовых и разнородных материалов различного назначения в химической, электронной и...
Тип: Изобретение
Номер охранного документа: 0002404887
Дата охранного документа: 27.11.2010
24.05.2019
№219.017.607b

Способ иммобилизации радиоактивных отходов в минералоподобной матрице

Изобретение относится к переработке жидких радиоактивных отходов (РАО), преимущественно азотнокислых, содержащих щелочные и щелочно-земельные элементы, в том числе соли натрия, радиоизотопы Cs и Sr. Способ иммобилизации радиоактивных отходов в минералоподобной матрице включает синтез минерала с...
Тип: Изобретение
Номер охранного документа: 0002439726
Дата охранного документа: 10.01.2012
09.06.2019
№219.017.7aa7

Способ резки толстых металлических листов

Изобретение относится к области обработки металлических материалов, а именно резки листовых материалов, преимущественно резки толстых стальных листов. Резку листовых материалов осуществляют воздействием на поверхность разрезаемого листа струей кислорода, истекающей из сверхзвукового сопла, и...
Тип: Изобретение
Номер охранного документа: 0002350445
Дата охранного документа: 27.03.2009
13.06.2019
№219.017.8275

Способ получения магнитных микросфер разных фракций из летучей золы тепловых станций

Изобретение относится к области разделения твердых материалов комбинированными способами и может быть использовано при переработке энергетических зол с получением из них магнитных микросфер узких фракций определенного размера, с заданным составом и магнитными свойствами. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002407595
Дата охранного документа: 27.12.2010
06.07.2019
№219.017.a8ff

Железооксидный катализатор для термолиза тяжелого углеводородного сырья

Изобретение относится к области катализа и может быть использовано в качестве катализатора в процессе термолиза тяжелых нефтей и нефтяных остатков. Описан железооксидный катализатор для процесса термолиза тяжелого углеводородного сырья, позволяющий увеличить выход светлых фракций и не требующий...
Тип: Изобретение
Номер охранного документа: 0002442648
Дата охранного документа: 20.02.2012
10.07.2019
№219.017.ac3d

Способ работы сверхзвукового пульсирующего прямоточного воздушно-реактивного двигателя и сверхзвуковой пульсирующий прямоточный воздушно-реактивный двигатель

Способ работы сверхзвукового пульсирующего прямоточного воздушно-реактивного двигателя включает подачу и сжигание топлива в сверхзвуковом потоке в расширяющемся канале камеры сгорания. Подачу и сжигание топлива осуществляют в нескольких расширяющихся участках камеры сгорания в...
Тип: Изобретение
Номер охранного документа: 0002347098
Дата охранного документа: 20.02.2009
10.07.2019
№219.017.b07d

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Устройство содержит установленные симметрично с образованием общей форкамеры два дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002436058
Дата охранного документа: 10.12.2011
10.07.2019
№219.017.b084

Импульсная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень,...
Тип: Изобретение
Номер охранного документа: 0002439523
Дата охранного документа: 10.01.2012
+ добавить свой РИД