×
13.02.2018
218.016.2619

Результат интеллектуальной деятельности: Способ определения скорости коррозии

Вид РИД

Изобретение

№ охранного документа
0002644251
Дата охранного документа
08.02.2018
Аннотация: Изобретение относится к способам автоматического измерения скорости коррозии металлических и иных электропроводящих материалов электрохимическим методом. Способ определения скорости коррозии металлических материалов, помещенных в электролит, содержит стадии автоматического определения зависимости тока коррозии от потенциала электрода, и автоматической линейной аппроксимации полученной зависимости Тафеля в логарифмических координатах при наличии экспериментальных погрешностей, при этом участки для линейной аппроксимации выбирают с помощью варьирования длины и положения отрезков на экспериментальных зависимостях тока от напряжения до достижения максимального произведения достоверностей аппроксимации анодного и катодного участков прямыми при условии, что точка пересечения этих прямых по потенциалу отклоняется не более чем на заданную экспериментатором величину от потенциала минимума тока на вольтамперной кривой. Технический результат - автоматизация процесса определения фарадеевского тока как тока коррозии. 1 з.п. ф-лы, 4 ил.

Изобретение относится к способам автоматического измерения скорости коррозии металлических и иных электронпроводящих материалов электрохимическим методом. Технический результат - автоматизация процесса определения фарадеевского тока как тока коррозии в условиях, когда благодаря присутствию, кроме основного, побочных электрохимических процессов на исследуемом электроде или иных экспериментальных погрешностей экспериментальные данные не подчиняются достаточно строго уравнению Тафеля и не являются прямыми в области больших плотностей токов в полулогарифмических координатах. Предлагаемый способ предназначен для использования в программном обеспечении приборов для электрохимических измерений (потенциостатов) или в независимом программном обеспечении для обработки экспериментальных данных вольтамперометрии.

Настоящее изобретение относится к методам определения скорости коррозии с помощью анализа экспериментально измеренных зависимостей тока электрохимической ячейки от напряжения, поляризующего исследуемый электрод (т.е. изготовленный из исследуемого материала) и определения из этого анализа плотности тока самопроизвольной коррозии. Целью такого анализа, осуществляемого автоматически, математически с выводом результатов в числовом виде, является вычисление тока коррозии в отсутствие поляризации с помощью экстраполяции части экспериментальных данных, подчиняющихся экспоненциальной зависимости уравнения Тафеля [A.J. Bard, G. Inzert, F. Scholz, Electrochemical Dictionary. Sprtinger-Verlag: Berlin (2008) 723 р.]. Недостатком известных методов анализа является то, что они рассчитаны на условия отсутствия заметных экспериментальных и иных погрешностей, и отсутствием побочных электрохимических процессов, кроме собственно коррозии, когда уравнение Тафеля выполняется в широком интервале потенциалов, то есть только когда линейные участки имеются в явном виде как на катодном, так и на анодном ходе вольтамперной кривой, что в действительности на практике наблюдается далеко не всегда. При нарушении этого условия используется только выбор параметров и/или проведение процедуры экстраполяции вручную, на основе опыта и интуиции экспериментатора.

Достаточно близким аналогом к настоящему изобретению является патент США US 8,447,529 В2 с приоритетом от 21 мая 2013 г. [Патент США US 8,447,529 В2 от 21 марта 2013 г. с приоритетом от 18 января 1910 г. Способ и система для предсказания скорости коррозии с использованием механистических моделей. (METHOD AND SYSTEM FOR PREDICTING CORROSION RATES USING MECHANISTIC MODELS), авторы Sandra E. Hernandez; Ziru Zhang, Richard C. Woollam; Jose R. Vera, H. Durnie, Патентообладатель BP Corporation North America Inc.], в котором рассматривается сложная компьютеризованная система анализа коррозионных данных и расчета скорости коррозии в различных условиях. При этом рассматривается анализ реальных экспериментальных данных, полученных в условиях протекания не только тока коррозии, но и многочисленных побочных процессов. Расчет тока коррозии в этих условиях производится с помощью моделирования всех основных побочных процессов, для чего кроме электрохимических данных (ток, напряжение) собираются многочисленные параметры измеряемой системы - химический состав жидкости в исследуемом объекте (трубе), pH, концентрация углекислого газа, температура, наличие ингибиторов коррозии и т.п. При этом суммированием таффелевских и диффузионных зависимостей различных процессов осуществляется моделирование экспериментальных данных. Преимуществом метода является получение тока коррозии в зависимости от внешних условий и исключение влияния побочных процессов за счет их прямого расчета, а недостатком - необходимость измерения значительного числа дополнительных параметров и непригодность готового алгоритма моделирования при смене исследуемого объекта, а также сложность и, как следствие, невозможность автоматизации с целью проведения экспресс-анализа в полевых условиях.

Наиболее близким к настоящему изобретению является патент США № US 4,056,445 с приоритетом от 26 ноября 1976 г. [Патент США № US 4,056,445 от 1 ноября 1977 г. с приоритетом от 26 ноября 1976 г. Определение скорости коррозии электрохимическим методом (DETERMINATION OF CORROSION RATES BY AN ELECTROCHEMICAL METHOD) авторы Wayne M. Gauntt и Earl L. Pye.], в котором описан способ быстрого определения скорости коррозии металлического материала с помощью оценки электрохимического тока коррозии в измерительной электрохимической ячейке с помощью экстраполяции тафелевских зависимостей по 4-м экспериментальным точкам (2 для анодной поляризации и 2 для катодной). Для обоих поляризаций потенциалы первой и второй измеряемых точек выбираются таким образом, что они лежат в области экспоненциальной зависимости Тафеля поляризационной кривой. При этом ток коррозии для испытываемого электрода определяется путем экстраполяции кривой в тафелевских координатах к потенциалу нулевого тока; такая экстраполяция выполняется простым решением системы линейных уравнений в логарифмических координатах (Фиг. 1).

Недостатком технического решения, использованного в прототипе, является то, что при наличии сильных помех, побочных электрохимических процессов и других источников экспериментальных погрешностей, нередки ситуации, когда точного соответствия зависимости тока от напряжения уравнению Тафеля не наблюдается, и измеренная зависимость не является точно экспоненциальной (линейной в логарифмических координатах), а отклоняется от нее. Также, серьезным его недостатком является большая зависимость получаемого результата от личного опыта экспериментатора, производящего ручной подбор отрезков катодного и анодного хода вольтамперной кривой для наилучшей аппроксимации. Также ручной подбор этих отрезков занимает очень большое время и не имеет достоверного критерия того - возможна ли вообще успешная обработка выбранной экспериментальной кривой, а она возможна не для всех экспериментальных кривых, например, сильно искаженных омическим сопротивлением измерительной ячейки, где прямые участки оказываются заметно скругленными, и выбрать наилучшие участки для аппроксимации визуально очень иногда невозможно.

Для решения задачи линейной экстраполяции зависимости между напряжением и током при наличии экспериментальных погрешностей мы предлагаем способ автоматического выбора положения и длины отрезков для линейной аппроксимации на полученных экспериментальных зависимостях (в анодной и катодной области).

Критерием выбора (целевой функцией) служит максимизация произведения достоверностей аппроксимации анодного и катодного участков прямыми при условии, что точка пересечения этих прямых по потенциалу отклоняется не более чем на заданную экспериментатором величину от потенциала минимума тока на вольтамперной кривой.

Важным достоинством предлагаемого способа является возможность его стопроцентной автоматизации.

ПРИМЕРЫ

Пример результата автоматической обработки вольтамперной кривой коррозии латунного образца в растворе 3% NaCl. Две пересекающиеся красные прямые справа есть результат аппроксимации автоматически выбранных аппроксимируемых участков. Кружками обведены экспериментальные точки данных, автоматически выбранные для наилучшей аппроксимации. Горизонтальная прямая слева проведена для лучшей визуализации результатов из точки минимума тока в точку пересечения аппроксимирующих прямых (Фиг. 2-4).

Перед выполнением автоматического поиска наиболее подходящих для аппроксимации участков задают границы расчета, для экономии машинного времени и сокращения времени расчета. Главным критерием возможности и точности выполнения расчета является минимальное отклонение потенциала минимума тока от потенциала пересечения аппроксимированных прямых. В случае, если для всех перебранных вариантов аппроксимируемых отрезков не найдется комбинации прямых, которые пересекались бы в точке с допустимым отклонением, то расчет невозможен. В этом случае необходимо затрубить отклонение потенциала. На практике практически всегда удается выполнить расчет корректно зарегистрированных и не сильно искаженных экспериментальными погрешностями кривых, если выбрать в качестве допустимого отклонения базовую погрешность используемого для регистрации обрабатываемой вольтамперной кривой прибора. Также, в параметрах автоматического подбора участков и расчета задается минимальная длина аппроксимируемых участков в количестве точек данных, так как этот параметр тоже варьируется в ходе подбора участков катодного и анодного хода кривых для наилучшей аппроксимации.

Критерием качества проведенной аппроксимации являются показатели достоверности аппроксимации каждого из выбранных участков. При необходимости экспериментатор может выбрать более короткие минимальные длины аппроксимируемых участков для получения более высоких показателей достоверности.

Большим достоинством предложенного метода является то, что он имеет четкий критерий - возможно ли выполнение аппроксимации для выбранной экспериментальной кривой или нет. В случае сильного ее искажения экспериментальными погрешностями, например омическим сопротивлением, расчет аппроксимацией прямыми может оказаться в принципе невозможен.


Способ определения скорости коррозии
Способ определения скорости коррозии
Способ определения скорости коррозии
Способ определения скорости коррозии
Способ определения скорости коррозии
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
27.08.2016
№216.015.4dda

Двухкомпонентный электрон-селективный буферный слой и фотовольтаические ячейки на его основе

Настоящее изобретение относится к использованию производных фуллеренов в оптоэлектронных устройствах, таких как фотовольтаические ячейки, формулы (I): где F - [60]фуллерен или [70]фуллерен, М представляет собой COOH, r представляет собой целое число от 2 до 8, Z представляет собой группу...
Тип: Изобретение
Номер охранного документа: 0002595342
Дата охранного документа: 27.08.2016
09.06.2018
№218.016.5eaa

Производные щавелевой кислоты, их использование в качестве хемосенсибилизаторов в комбинированной противоопухолевой терапии с цитостатиками при лечении лейкозов и лекарственно-устойчивых лейкозов, способ получения производных щавелевой кислоты

Изобретение относится к производным щавелевой кислоты общей формулы RC(O)-C(O)R, где R=СНСН(-NH)C(O)ONa и Ph-CHCH(-NH)C(O)ONa, которые могут найти применение при лечении лекарственно-резистентных опухолей. Изобретение относится также к указанным производным щавелевой кислоты в качестве...
Тип: Изобретение
Номер охранного документа: 0002656614
Дата охранного документа: 06.06.2018
26.12.2018
№218.016.ab9d

Водород-аккумулирующие материалы и способ их получения

Изобретение относится к водородным технологиям и водородной энергетике. Водород-аккумулирующие материалы содержат следующие компоненты, мас.%: 97-75 MgH и 3-25 никель-графенового катализатора гидрирования, представляющего собой 10 или 25 мас.% наночастиц Ni размером 1-10 нм, равномерно...
Тип: Изобретение
Номер охранного документа: 0002675882
Дата охранного документа: 25.12.2018
30.03.2019
№219.016.f94f

Способ получения олигомеров этилена состава c (варианты)

Изобретение относится к двум вариантам способа получения олигомеров этилена состава С путем олигомеризации этилена на хромсодержащих каталитических системах при повышенном давлении и температуре. Один из вариантов способа характеризуется тем, что проводят предварительное формирование...
Тип: Изобретение
Номер охранного документа: 0002683565
Дата охранного документа: 29.03.2019
24.05.2019
№219.017.5efc

Способ получения нанокомпозиционных микропористых пластиков с армированными порами

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси,...
Тип: Изобретение
Номер охранного документа: 0002688554
Дата охранного документа: 21.05.2019
14.05.2023
№223.018.5635

Способ газификации твёрдого топлива и устройство для его осуществления

Изобретение относится к области переработки твердых топлив с получением горючего газа, в том числе синтез-газа, и может быть использовано для переработки органических топлив с плохой газопроницаемостью, склонных к неустойчивому горению с образованием каналов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002730063
Дата охранного документа: 17.08.2020
16.05.2023
№223.018.6232

Сопряженный полимер на основе замещенного флуорена, бензотиадиазола и тиофена и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного флуорена, бензотиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в...
Тип: Изобретение
Номер охранного документа: 0002789133
Дата охранного документа: 30.01.2023
16.05.2023
№223.018.6235

Сопряженный полимер на основе бензодитиофена, тиофена и бензотиадиазола и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, бензотиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в...
Тип: Изобретение
Номер охранного документа: 0002789131
Дата охранного документа: 30.01.2023
Показаны записи 11-12 из 12.
27.08.2016
№216.015.4dda

Двухкомпонентный электрон-селективный буферный слой и фотовольтаические ячейки на его основе

Настоящее изобретение относится к использованию производных фуллеренов в оптоэлектронных устройствах, таких как фотовольтаические ячейки, формулы (I): где F - [60]фуллерен или [70]фуллерен, М представляет собой COOH, r представляет собой целое число от 2 до 8, Z представляет собой группу...
Тип: Изобретение
Номер охранного документа: 0002595342
Дата охранного документа: 27.08.2016
10.07.2019
№219.017.ad27

Способ получения наноструктур полупроводника

Изобретение относится к области низкоразмерной нанотехнологии и высокодисперсным материалам и может быть использовано для получения упорядоченного массива наночастиц полупроводников на основе мезапористых твердофазных матриц. Сущность изобретения: в способе получения наноструктур...
Тип: Изобретение
Номер охранного документа: 0002385835
Дата охранного документа: 10.04.2010
+ добавить свой РИД