×
13.02.2018
218.016.2278

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ УЧАСТКОВ ТРУБОПРОВОДОВ ОТ ГЕОМАГНИТНО-ИНДУЦИРОВАННЫХ БЛУЖДАЮЩИХ ТОКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002642141
Дата охранного документа
24.01.2018
Аннотация: Группа изобретений относится к области защиты подземных металлических сооружений от коррозии, вызванной геомагнитно-индуцированными источниками блуждающих токов, и может быть использована в нефтяной и газовой промышленности при эксплуатации подземных трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов. Размещают устройство для защиты трубопроводов от геомагнитно-индуцированных блуждающих токов, состоящее из протектора, электрического проводника, реле, блока управления, источника тока и измерителя напряженности магнитного поля, выполняют электрическую цепь подключения протектора к трубопроводу через реле, измеряют напряженность магнитного поля Земли, и при достижении определенного порогового уровня параметров магнитного поля Земли замыкают контактами реле цепь подключения протектора, при снижении параметров поля ниже порогового - размыкают цепь подключения протектора. Технический результат - повышение уровня защищенности трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной геомагнитно-индуцированными источниками блуждающих токов, и может быть использовано в нефтяной и газовой промышленности при эксплуатации подземных трубопроводов, в частности при эксплуатации нефтегазопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов.

Известен способ защиты трубопроводов от источников блуждающих токов, заключающийся в подключении установки дренажной защиты между рельсом электрифицированной железной дороги и защищаемым трубопроводом (Александров Ю.В. Коррозия газонефтепроводов. Электрохимические методы защиты - СПб.: «Недра», 2011. - С. 306-314).

Недостаток способа - возможность защиты трубопроводов только от блуждающих токов, источником которых является электрифицированный железнодорожный транспорт.

Известна система защиты трубопровода от воздействия натекающих и стекающих постоянного и переменного токов, наводимых от внешних источников, содержащая подключаемый параллельно станции катодной защиты диодный мост, нагруженный на конденсатор, и балластный резистор (Патент РФ №2549800).

Недостатком устройства является влияние его на работу станции катодной защиты, т.к. подключение такой системы к станции защиты эквивалентно подключению балластного резистора (если пренебречь падением напряжения на диодах моста (около 0,7 В), что приведет к повышенному расходу электроэнергии и повышению нагрузки на преобразователь станции.

Известно устройство для компенсации переменного напряжения, индуцированного в металлическом трубопроводе и направленного вдоль указанного трубопровода, расположенного в среде и окруженного слоем или оболочкой электроизоляционного материла (Патент РФ №2114934).

Недостатком способа является сложность его реализации и высокие эксплуатационные затраты при его осуществлении.

Известна система защиты трубопроводов от воздействия наведенного переменного тока, включающая опору с размещенным на ней электрическим шкафом, в котором размещены разрядник для грозозащиты, блок частных фильтров и конденсаторов и заземление для организации стекания в грунт переменного тока, наводимого в трубопроводе близкорасположенной воздушной линией электропередач (Патент РФ №2446234).

Недостаток системы - невозможность отводить от трубопровода квазипостоянные токи геомагнитной природы (частота токов порядка мГц).

Известен способ защиты трубопроводов от наведенных токов геомагнитной природы, заключающийся в установлении с определенным шагом вставок электроизолирующих (Основы проектирования средств электрохимической защиты от коррозии объектов транспорта нефти и газа: учебное пособие / под ред. д.т.н., профессора Агинея Р.В.: СПб.: «Недра». - 2016. - С. 90-95).

Недостатки способа: сложность реализации на действующих трубопроводах, высокие затраты на реализацию способа, пониженная эксплуатационная надежность вставок относительно труб.

Известно устройство для защиты трубопроводов от коррозии блуждающими токами, взятое нами в качестве прототипа, содержащее протектор и диод, подключенный анодом к протектору, а катодом к защищаемому сооружению, нормально замкнутое реле, включенное в цепь «протектор - сооружение», блок управления и вольтметр (Патент РФ №95842).

Недостаток известного технического решения состоит в его негативном влиянии на работу станций катодной защиты. Протектор, подключенный при помощи нормально замкнутого реле к трубопроводу, при совместной защите со станциями катодной защиты является искусственным экраном и нарушает ее работу: изменяет параметры токораспределения, увеличивает расход электроэнергии, загрузку преобразователей станции, расход анодных заземлите лей. Наибольшее влияние протекторы будут оказывать при их установке вблизи точки дренажа станции катодной защиты, т.е. в местах с максимальной плотностью защитного тока.

Задачей изобретения является создание способа, позволяющего защищать трубопровод от негативного действия геомагнитно-индуцированного тока, с минимальным влиянием на работу станций катодной защиты трубопровода и создание устройства, реализующего предлагаемый способ.

Технический результат - повышение уровня защищенности трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов.

В части устройства задача решается тем, что в устройстве для защиты трубопроводов от геомагнитно-индуцированных блуждающих токов, состоящем из протектора, выполненного из металла, более электроотрицательного, чем металл трубопровода, электрического проводника для подключения протектора к трубопроводу через реле, блока управления, соединенного с управляемым входом реле, источника тока, устройство дополнительно содержит измеритель напряженности магнитного поля, соединенный с блоком управления и источником тока, при этом реле выполнено нормально разомкнутым.

В части способа задача решается тем, что в способе защиты участков трубопроводов от геомагнитно-индуцированных блуждающих токов, включающем размещение устройства для защиты трубопроводов геомагнитно-индуцированных блуждающих токов, выполнение электрической цепи подключения протектора к трубопроводу через реле, измеряют напряженность магнитного поля, при достижении определенного порогового уровня параметров магнитного поля Земли, замыкают контакты реле подключения протектора, при снижении параметров поля ниже порогового - размыкают контакты реле подключения протектора.

Конструкция устройства и порядок реализации способа поясняются схемой устройства (фиг. 1) и графиком напряженности поля с указанием моментов времени замыкания и размыкания реле подключения протектора (фиг. 2).

Способ и устройство реализуются следующим образом.

Протектор 1 заглубляется в грунт рядом с защищаемым трубопроводом 2 (фиг. 1). Электрическая цепь 3, соединяющая протектор с трубопроводом, имеет возможность замыкать-размыкать реле 4, которое управляется блоком управления 5. В штатном состоянии реле контакты реле нормально разомкнутые. Измеритель магнитного поля Земли 6 измеряет параметры, характеризующие поле. Измеритель магнитного поля 6 подключен к блоку управления 5. При достижении порогового значения параметра (или параметров) (фиг. 2) измеряемого поля, блок управления 5 подает сигнал на реле 4, которое замыкает цепь 3 подключения протектора 1. При этом индуцированные токи, возникшие в трубопроводе 2 в результате геомагнитных вариаций, через протектор 1 стекают в грунт. При снижении параметров поля ниже порогового уровня, реле 4 переходит в нормально разомкнутое состояние и отключает протектор 1. Т.к. время действия магнитных бурь составляет малую часть от общего времени (несколько процентов), время, когда протектор 1 подключен к трубопроводу 2, так же мало и, соответственно, воздействие на работу штатной системы электрохимической защиты минимально. Питание электрическим током элементов устройства обеспечивает источник питания 7.

Пример

Необходимо защитить от воздействия геомагнитно-индуцированных блуждающих токов участок магистрального газопровода «Бованенково-Ухта». Блуждающие токи негативно влияют на коррозионное состояние трубопровода и на работу систем электрохимической защиты.

При помощи системы коррозионного мониторинга, которая позволяет в дискретных точках трассы газопровода измерять разность потенциалов «труба-земля», устанавливают точки, в которых изменение потенциала «труба-земля» во время магнитных бурь максимально. Определяют, что участок, подверженный максимальному влиянию геомагнитных блуждающих токов, ограничен координатами км 1008-1118. Участок газопровода защищен установками катодной защиты, установленными в точках км 1010, км 1062, км 1101. Во время магнитных бурь разность потенциалов «труба-земля» на указанном участке носит знакопеременный характер. Средства катодной защиты не справляются с задачей стабилизации разности потенциала «труба-земля», что составляет угрозу коррозионного разрушения металла труб газопровода.

Расчетом устанавливают, что для противодействия геомагнитно-индуцированным блуждающим токам на рассматриваемом участке потребуется установка магниевых протекторов ПМ-5У с шагом около 2 км в общем количестве 52 шт. Назначают точки установки протекторов, преимущественно в местах с наименьшим сопротивлением грунта. Для минимизации объемов работ по подключению устройства к трубопроводу, точки установки устройства по возможности совмещают с местами установки штатных контрольно-измерительных пунктов, установка которых обязательна по ГОСТ Р 51164-98.

Постоянное подключение к газопроводу протекторов на данном участке газопровода приводит к стабилизации разности потенциалов «труба-земля», однако при этом происходит увеличение защитного тока на действующих станциях защиты и к ускоренному разрушению анодных заземлений установок защиты. Сила защитного тока и, соответственно, расход электроэнергии увеличивается в среднем в 5 раз: с 800-1000 мА до 4,0-5,0 А на каждой установке защиты.

В каждой точке установки устройства в грунт на расстоянии 3 м от оси трубопровода и на глубине около 2 м устанавливают протектор ПМ-5У (фиг. 1). Над трубопроводом в точке установки устройства устанавливают опору и ящик для размещения элементов устройства (на чертеже не показаны). Через опору, которая может быть выполнена из трубы диаметром 100-120 мм, от протектора и от трубопровода в ящик проводят электрические проводники цепи 3. В ящике подключают электрический провод цепи 3 от протектора 1 через контакты реле 4 к проводу от трубопровода 2. Кроме этого в ящике располагают блок управления 5, измеритель магнитного поля 6 и источник тока 7. В качестве реле, например, может быть использовано электромагнитное реле РНЕ22 (пр-во РФ). Реле также может быть выполнено в виде твердотельного реле. Электрический сигнал для управления реле 4 подается от блока управления 5, который может быть выполнен в виде триггера, реализованного с применением цифровых логических элементов «НЕ». Измеритель магнитного поля 6 может быть реализован на магниторезистивном сенсоре, например НМС1052 (Honeywell, США). Сигнал от измерителя магнитного поля 6 подается на блок управления для управления 5 реле 4. В качестве измеряемого параметра магнитного поля можно применить напряженность поля, а также, например, скорость изменения напряженности поля (фиг. 2).

Источник питания 7 измерителя магнитного поля 6, блока управления 5 и реле 4 (или твердотельного реле) выполняют, например, в виде солнечной батареи или химического источника тока. Источник питания 7 также можно выполнить, используя преобразование энергии геомагнитных вариаций в электрическую энергию (фиг. 1).

В процессе работы устройство находится в начальном разомкнутом состоянии, контакты реле 4 разрывают цепь 3. В момент выхода параметров измеряемого магнитного поля за пределы естественных фоновых изменений напряженности Земли (во время магнитных бурь) (фиг. 2), измеритель 6 дает сигнал блоку управления 5, который посредством реле 4 замыкает цепь 3 протектора 1 (фиг. 1). При подключении протекторов система коррозионного мониторинга не обнаруживает изменения разности потенциалов «труба-земля» за границы, требуемые ГОСТ Р 51164-98. После прохождения магнитной бури по сигналу измерителя напряженности поля, блок управления переводит реле в нормально разомкнутое состояние. Опыт показывает, что в течение месяца время, когда протектор является подключенным к трубопроводу, составляет порядка 4-7 часов, что составляет не более 1% от общего времени. Таким образом, обеспечивается минимальное воздействие на существующую систему электрохимической защиты трубопровода: не снижается ресурс анодных заземлений, которые являются наиболее дорогостоящим элементом установки катодной защиты; увеличение расхода электрической энергии на работу средств противокоррозионной защиты произошло на 4-6% в расчете на месяц работы, при этом обеспечивается полная защита трубопровода от геомагнитно-индуцированных блуждающих токов и соответствие режимов работы противокоррозионной защиты требованиям ГОСТ Р51164-98.


СПОСОБ ЗАЩИТЫ УЧАСТКОВ ТРУБОПРОВОДОВ ОТ ГЕОМАГНИТНО-ИНДУЦИРОВАННЫХ БЛУЖДАЮЩИХ ТОКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ЗАЩИТЫ УЧАСТКОВ ТРУБОПРОВОДОВ ОТ ГЕОМАГНИТНО-ИНДУЦИРОВАННЫХ БЛУЖДАЮЩИХ ТОКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-36 из 36.
10.04.2019
№219.017.0af5

Способ заряжания скважины и конструкция скважинного заряда

Способ относится к горной промышленности, а именно к способам заряжания скважин и конструкции скважинного заряда при проведении взрывных работ преимущественно на карьерах. Использование изобретения позволит снизить трудоемкость заряжания скважин взрывчатыми веществами (ВВ) и повысить...
Тип: Изобретение
Номер охранного документа: 0002156431
Дата охранного документа: 20.09.2000
18.05.2019
№219.017.56ae

Устройство для приготовления и заряжания скважин смесевым эмульсионным взрывчатым веществом

Изобретение относится к области горного дела, в частности к конструкции смесительно-зарядных машин, используемых для механизированного приготовления эмульсионного взрывчатого вещества и заряжания скважин при ведении открытых горных работ. Технический результат - расширение области применения....
Тип: Изобретение
Номер охранного документа: 0002312301
Дата охранного документа: 10.12.2007
10.07.2019
№219.017.ab7f

Эмульсионный взрывчатый состав типа "вода в масле"

Изобретение относится к промышленным взрывчатым веществам, а именно к эмульсионным взрывчатым составам типа «вода в масле» (обратным эмульсиям). Предложен эмульсионный взрывчатый состав типа «вода в масле», содержащий аммиачную селитру, минеральное масло, воду и эмульгатор. Эмульгатор получен...
Тип: Изобретение
Номер охранного документа: 0002258055
Дата охранного документа: 10.08.2005
23.07.2019
№219.017.b6ed

Способ выполнения анодного заземления

Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает определение уровней грунтовых вод и промерзания грунта...
Тип: Изобретение
Номер охранного документа: 0002695101
Дата охранного документа: 19.07.2019
02.10.2019
№219.017.d14d

Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты

Использование: в области электротехники. Технический результат - повышение безопасности и удобства эксплуатации оборудования. Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты выполнено в виде блока силовых диодов, блока ограничителей от...
Тип: Изобретение
Номер охранного документа: 0002700269
Дата охранного документа: 16.09.2019
21.05.2020
№220.018.1f7c

Способ определения срока вывода в ремонт анодного заземления

Изобретение относится к области электрохимической защиты от коррозии подземных трубопроводов. В начальный момент времени ввода установки катодной защиты УКЗ в эксплуатацию выполняют измерение значения сопротивления растеканию тока с анодного заземления, входящего в состав УКЗ участка...
Тип: Изобретение
Номер охранного документа: 0002721250
Дата охранного документа: 18.05.2020
Показаны записи 51-58 из 58.
29.05.2019
№219.017.6713

Способ изготовления контрольного образца для дефектоскопии трубопроводов

Изобретение относится к дефектоскопии подземных трубопроводов и может быть использовано для изготовления контрольного образца с трещиной коррозионного растрескивания под напряжением. Способ изготовления контрольного образца для дефектоскопии трубопроводов включает вырезку образца и нагружение...
Тип: Изобретение
Номер охранного документа: 0002364850
Дата охранного документа: 20.08.2009
10.07.2019
№219.017.adbb

Способ получения эмульгатора для производства эмульсионных взрывчатых веществ

Изобретение относится к области эмульсионных взрывчатых веществ. Способ получения эмульгатора для производства эмульсионных взрывчатых веществ на основе продуктов конденсации полиизобутиленянтарных ангидридов с алканоламинами, растворенных в индустриальном масле, включает проведение...
Тип: Изобретение
Номер охранного документа: 0002377228
Дата охранного документа: 27.12.2009
23.07.2019
№219.017.b6ed

Способ выполнения анодного заземления

Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает определение уровней грунтовых вод и промерзания грунта...
Тип: Изобретение
Номер охранного документа: 0002695101
Дата охранного документа: 19.07.2019
02.10.2019
№219.017.d14d

Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты

Использование: в области электротехники. Технический результат - повышение безопасности и удобства эксплуатации оборудования. Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты выполнено в виде блока силовых диодов, блока ограничителей от...
Тип: Изобретение
Номер охранного документа: 0002700269
Дата охранного документа: 16.09.2019
21.05.2020
№220.018.1f7c

Способ определения срока вывода в ремонт анодного заземления

Изобретение относится к области электрохимической защиты от коррозии подземных трубопроводов. В начальный момент времени ввода установки катодной защиты УКЗ в эксплуатацию выполняют измерение значения сопротивления растеканию тока с анодного заземления, входящего в состав УКЗ участка...
Тип: Изобретение
Номер охранного документа: 0002721250
Дата охранного документа: 18.05.2020
31.05.2020
№220.018.22fa

Способ определения механических напряжений в стальном трубопроводе

Изобретение относится к области оценки технического состояния стальных трубопроводов и может быть использовано для определения механических напряжений, например, в стальных трубопроводах подземной прокладки. Сущность: осуществляют изготовление образца в виде полого цилиндра из материала,...
Тип: Изобретение
Номер охранного документа: 0002722333
Дата охранного документа: 29.05.2020
12.04.2023
№223.018.440e

Способ контроля напряженно-деформированного состояния заглубленного трубопровода

Изобретение относится к способам мониторинга состояния заглубленных трубопроводов. Измеренные с помощью N>3 волоконно-оптических распределенных сенсоров продольной деформации значения деформаций в точках крепления сенсоров к поверхности трубопровода с помощью модели деформации трубопровода...
Тип: Изобретение
Номер охранного документа: 0002729304
Дата охранного документа: 05.08.2020
12.04.2023
№223.018.45f3

Способ калибровки системы контроля напряженно-деформированного состояния заглубленного трубопровода

Изобретение относится к способам мониторинга состояния заглубленных трубопроводов. Для учета начальных напряжений, возникающих при сборке трубопровода путем сварки из отдельных труб из-за неровностей поверхности земли и приводящих к изгибным деформациям и соответствующим напряжениям в теле...
Тип: Изобретение
Номер охранного документа: 0002741185
Дата охранного документа: 22.01.2021
+ добавить свой РИД