×
31.05.2020
220.018.22fa

Способ определения механических напряжений в стальном трубопроводе

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оценки технического состояния стальных трубопроводов и может быть использовано для определения механических напряжений, например, в стальных трубопроводах подземной прокладки. Сущность: осуществляют изготовление образца в виде полого цилиндра из материала, аналогичного материалу трубопровода, пошаговое нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды и его изгибом, получение зависимости коэрцитивной силы от величины механических напряжений в образце. Назначают две контрольные точки на окружности образца: одну - в зоне растяжения при изгибе, вторую - в зоне сжатия при изгибе. Нагружение образца производят одновременным действием изгиба и внутреннего давления среды. Измеряют коэрцитивную силу в контрольных точках, ориентируя датчик коэрцитиметра вдоль оси образца. Строят графики зависимости коэрцитивной силы Н от изгибных напряжений σ, при различных давлениях среды Р. Определяют сечение трубопровода с потенциально высокими изгибными напряжениями. Намечают точки контроля окружности трубопровода в выбранном сечении, измеряют коэрцитивную силу в выбранных точках, ориентируя датчик коэрцитиметра таким образом, чтобы направление магнитного потока в датчике совпадало с осью трубопровода. Выбирают среди измеренных значений максимальное и минимальное, при этом эти значения должны относиться к диаметрально противоположным точкам сечения трубопровода, считают, что точка с минимальным значением коэрцитивной силы связана с зоной максимальных растяжений, с максимальным значением - с зоной максимального сжатия. Определяют угол плоскости изгиба, проходящей через точки максимальных растяжений и сжатия, измеряют давление в трубопроводе и определяют изгибные напряжения в трубопроводе при помощи полученной зависимости для соответствующего давления. Технический результат: возможность определения механических напряжений в стенке стального трубопровода с учетом одновременного воздействия поперечного изгиба и внутреннего давления транспортируемой среды, повышение достоверности способа, расширение его возможностей. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области оценки технического состояния стальных трубопроводов и может быть использовано для определения механических напряжений, например, в стальных трубопроводах подземной прокладки.

Известен способ измерения механических напряжений в трубопроводах, работающих под давлением, в котором на контрольном образце трубопровода с нулевыми значениями продольных напряжений, в качестве которого выбирают прямолинейный подземный участок трубопровода, измеряют значения параметра магнитного шума, определяют пересчетный коэффициент пропорциональности, регистрируют значение параметра магнитного шума металла трубопровода в месте контроля и по их значениям судят о напряжениях в трубопроводе (Патент РФ №2116635, МПК G01L 1/12, G01N 27/83. Опубл. 27.07.98. Бюлл. №21, С. 342.).

Недостатком способа является сложность выбора участка трубопровода с нулевыми продольными напряжениями, т.к. прямолинейность участка не гарантирует нулевые продольные напряжения в металле трубопровода, что снижает точность измерения напряжений.

Известен способ определения напряжений, основанный на получении при растяжении образцов металла с различной деградацией структуры, зависимостей анизотропии коэрцитивной силы от растягивающих напряжений в образцах и оценке напряжений в конструкции с помощью полученных зависимостей с учетом фактической структуры металла (Патент РФ №2281468 Заявл. 14.03.2005 г. Опубл. 10.08.2006 г.).

Недостатком способа является невозможность определять напряжения при сложнонапряженном состоянии металла конструкции. Например, для трубопроводов характерно плосконапряженное состояние стенок (осевые и кольцевые напряжения).

Наиболее близким к заявляемому способу является способ определения напряженного состояния стальных конструкций, взятый нами в качестве прототипа (Патент РФ №2439530, МПК G01N 3/08. Опубл. 10.01.2012 г.).

В известном решении цилиндрические полые образцы металла из материала, аналогичного материалу конструкции, напряженное состояние которого необходимо определить, с определенным шагом нагружают внутренним давлением жидкой или газовой среды, находящейся внутри цилиндра, для создания плосконапряженного состояния, вызываемого растягивающими напряжениями в осевом и кольцевом направлениях, или изгибают образец для создания осевых напряжений растяжения-сжатия. Для каждого шага нагружения определяют напряжения в образце расчетным или другим способом, на каждом шаге нагружения измеряют коэрцитивную силу, при этом магнитный поток датчика коэрцитиметра ориентируют соосно с направлением определяемых напряжений. Строят зависимость коэрцитивной силы от напряжений в образце. Затем измеряют коэрцитивную силу металла конструкции, ориентируя датчик по направлению действия оцениваемых напряжений, и определяют напряжения с помощью полученной зависимости.

Недостатками известного способа являются:

1. неспособность определять напряжения в действующих трубопроводах при одновременном воздействии изгиба и внутреннего давления среды;

2. не определяет угол плоскости изгиба, определение которого является практически важной задачей;

3. недостаточная достоверность способа, так как фактические значения коэрцитивной силы металла стенок труб могут быть вызваны не только напряженным состоянием трубопровода в заданном сечении, но и влиянием сторонних факторов, вследствие чего происходит некорректная интерпретация результатов.

В качестве пояснения сообщаем следующее.

Напряженное состояние стенок тонкостенных труб трубопроводов приближенно является двухосным с двумя главными напряжениями: кольцевыми и продольными. Кольцевые напряжения в стенке труб возникают от внутреннего давления транспортируемой среды и их определение не вызывает трудностей по известным зависимостям, если известна величина давления среды. Эти напряжения условно постоянны по окружности рассматриваемого сечения трубы.

Продольные напряжения складываются из напряжений, обусловленных: 1. внутренним давлением среды (рассчитываются как доля от кольцевых); 2. температурными деформациями заземленного участка трубопровода (определяются расчетом); 3. изгибом, который вызван кривизной трассы для укладки трубопровода (например, кривизной траншеи). Также изгиб может быть связан с непроектными изменениями положения трубопровода (например, в результате его всплытия, перемещения вследствие оползневых процессов и др.).

Поэтому главной практической задачей определения напряженного состояния трубопроводов является оценка изгибных напряжений в потенциально опасных сечениях трубопровода. В отличие от других вышеперечисленных напряжений, изгибные напряжения характеризуются тем, что в различных точках по окружности рассматриваемого сечения трубы их значение различно, при этом, они максимальны по модулю в двух диаметрально противоположных точках сечения, через которые проходит плоскость изгиба. В одной точке изгибные напряжения отрицательные (сжимающие), в другой - положительные (растягивающие).

Наличие внутреннего давления изменяет продольные напряжения в стенке трубопровода, что ограничивает применение способа-прототипа на действующих трубопроводах, работающих под давлением.

Отмеченные особенности формирования напряженного состояния стенок труб использует предлагаемый способ, что позволяет решить поставленную техническую задачу.

Технической задачей изобретения является определение механических напряжений в стенке стального трубопровода с учетом одновременного воздействия поперечного изгиба и внутреннего давления транспортируемой среды, повышение достоверности способа, расширение его возможностей.

Поставленная задача решается тем, что в способе определения изгибных напряжений в стальных трубопроводах, включающем изготовление образца в виде полого цилиндра из материала, аналогичного материалу трубопровода, пошаговое нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды и его изгибом, получения зависимости коэрцитивной силы от величины механических напряжений в образце, согласно изобретения, назначают две контрольные точки на окружности образца: одну - в зоне растяжения при изгибе, вторую - в зоне сжатия при изгибе, нагружение образца производят одновременным действием изгиба и внутреннего давления среды, измеряют коэрцитивную силу в контрольных точках, ориентируя датчик коэрцитиметра вдоль оси образца, строят графики зависимости коэрцитивной силы Нс от изгибных напряжений σизг, при различных давлениях среды Рвн, определяют сечение трубопровода с потенциально высокими изгибными напряжениями, намечают точки контроля окружности трубопровода в выбранном сечении, измеряют коэрцитивную силу в выбранных точках, ориентируя датчик коэрцитиметра таким образом, чтобы направление магнитного потока в датчике совпадало с осью трубопровода, выбирают среди измеренных значений максимальное и минимальное, при этом эти значения должны относиться к диаметрально противоположным точкам сечения трубопровода, считают, что точка с минимальным значением коэрцитивной силы связана с зоной максимальных растяжений, с максимальным значением - с зоной максимального сжатия, определяют угол плоскости изгиба, проходящей через точки максимальных растяжений и сжатия, измеряют давление в трубопроводе и определяют изгибные напряжения в трубопроводе при помощи полученной зависимости для соответствующего давления.

На фиг. 1 изображен цилиндрический образец для пошагового нагружения его изгибом и внутренним давлением среды и измерением коэрцитивной силы в точках контроля. На фиг. 1 отмечены: 1 - цилиндрический образец; 2 - торцевые заглушки; 3 - бетонные блоки; 4 - хомуты; 5 - домкрат; 6 - гибкий шланг насоса; 7 - динамометр; 8 - контрольное сечение; 9, 10 - точки контроля.

На фиг. 2 представлена зависимость Hc=ƒ(σизг) коэрцитивной силы от величины продольных напряжений, вызванных действием поперечного изгиба и внутреннего давления для области сжатия и растяжения при давлении среды Рвн=4,5 МПа.

На фиг. 3 изображена лепестковая диаграмма, на которой отмечены результаты изменения коэрцитивной силы по окружности в выбранном сечении, выполненные с шагом 1 час (30 град.).

Способ реализуют следующим образом. Из трубы, выполненной из материала, аналогичного материалу трубопровода, напряженное состояние которого необходимо определить изготавливают испытательный герметичный образец.

Заполняют образец испытательной средой. Выбирают контрольное сечение на образце, отмечают две точки контроля, одна из которых располагается в зоне максимального растяжения металла при изгибе, другая - в зоне максимального сжатия. Пошагово увеличивают изгибающую силу, создающую изгиб. При помощи коэрцитиметра на каждом шаге нагружения измеряют коэрцитивную силу, при этом магнитный поток датчика коэрцитиметра ориентируют соосно с осью трубопровода (продольно).

Нагнетают давление среды в образце. При выбранном давлении среды пошагово нагружают образец изгибом, на каждом шаге нагружения в контрольных точках выполняют измерение коэрцитивной силы.

Пошаговое нагружение изгибом и измерение коэрцитивной силы в контрольных точках выполняют для различных значений давлений среды.

Для каждого шага нагружения определяют изгибные напряжения в контрольных точках, например, расчетным методом или методом электротензоизмерений.

Строят зависимости коэрцитивной силы, измеренной в контрольных точках, от изгибных напряжений Hc=ƒ(σизг) для различных значений внутреннего давления Рвн. На фиг. 2 изображен пример зависимости для давления Рвн=4,5 МПа.

Определяют сечение трубопровода с потенциально высокими изгибными напряжениями, напряжения металла в котором необходимо определить.

Подготавливают поверхность трубопровода для проведения измерения коэрцитивной силы: откапывают трубопровод (при необходимости), снимают защитное покрытие (при необходимости).

В выбранном сечении отмечают несколько точек контроля, располагая их по всей окружности трубопровода.

Выполняют измерения коэрцитивной силы в контрольных точках, располагая датчик коэрцитиметра вдоль оси трубопровода.

Выбирают среди измеренных значений максимальное и минимальное, при этом эти измерения должны относиться к диаметрально противоположным точкам окружности трубопровода: точка, в которой значение коэрцитивной силы минимально, связана с зоной максимальных растяжений, а точка с максимальным значением коэрцитивной силы - с зоной максимального сжатия (фиг. 3). Через эти точки проходит плоскость изгиба с углом относительно вертикали у.

Измеряют давление Рвн в трубопроводе вблизи выбранного сечения.

Изгибные напряжения определяют по значениям коэрцитивной силы в контрольных точках при помощи зависимости Нс=ƒ(σизг), полученной на образце для аналогичного давления Рвн.

Пример.

Необходимо определить продольные напряжения в действующем подземном нефтепроводе (диаметр 219 мм, толщина стенки трубы - 5 мм, материал - сталь 17Г1С), вызванные одновременным действием изгиба и внутреннего давления нефти. Образец для испытания изготавливают из трубы 1 (диаметр 219 мм, толщина стенки трубы - 5 мм, материал - сталь 17Г1С) с торцевыми заглушками 2. Общая длина образца -10 м (фиг. 1).

Образец устанавливают на бетонные блоки 3, концы трубы укрепляют к блокам при помощи металлических хомутов 4. Устанавливают домкрат гидравлический бутылочный 5 производства ООО «Сервис ключ» грузоподъемностью 10 т.под центром стенда, подсоединяют гибкий шланг 6 насоса опрессовочного НА-250 (максимальное давление 250 атм.) (на фиг. 1 не изображен) для создания внутреннего давления в образце. Между домкратом 5 и трубой 1 устанавливают динамометр электронный переносной ДЭПЗ 1Д-10Р-00 (фиг. 1. поз. 7). С учетом габаритных размеров датчика коэрцитиметра КМ 455.2 выбирают контрольное сечение 8 на образце в зоне максимальных изгибных напряжений, отстоящее от домкрата на расстоянии 200 мм, отмечают две контрольные точки с угловой ориентацией 6 часов (фиг. 1. поз. 9) и 12 часов (фиг. 1. поз. 10), соответствующие зоне максимального растяжения (12 часов - верх трубы) и максимального сжатия металла (6 часов - низ трубы).

Заполняют испытательный образец 1 водой.

Расчетным способом определяют, что максимальные напряжения в контрольных точках 9 и 10, не превышают 80% от предела прочности применяемой марки стали (предел прочности марки стали 17Г1С равен σв=510 МПа) при усилии на домкрате 5 равном 13,5 кН, что соответствует поднятию штока домкрата на 72 мм, при этом максимально возможное давление среды составляет 4,5 МПа.

Устанавливают количество шагов нагружения испытательного образца: 10 шагов нагнетания внутреннего давления (от 0 до 4,5 МПа с шагом 0,5 МПа) и 10 шагов создания изгиба (ход штока домкрата - от 0 мм до 72 мм с шагом 8 мм).

Пошагово изгибают образец 1 относительно его продольной оси домкратом 5 (с шагом 8 мм), определяют реакцию домкрата при помощи динамометра 7 на каждом шаге испытаний. Измеряют коэрцитивную силу в контрольных точках 9, 10 на каждом шаге нагружения при помощи коэрцитиметра, при этом магнитный поток датчика прибора ориентируют соосно с направлением определяемых напряжений.

Нагнетают пошагово (с шагом 0,5 МПа) внутреннее давление воды в трубе. При выбранном давлении пошагово нагружают испытательный образец изгибом (с шагом 8 мм), на каждом шаге нагружения в контрольных точках выполняют измерение коэрцитивной силы в каждой контрольной точке вдоль действия растягивающих напряжений.

Нагружают изгибом и измеряют коэрцитивную силу в контрольных точках для значений давления среды на каждом шаге.

Определяют значение величины изгибных напряжений, вызванных одновременным действием изгиба и внутреннего давления на стенку образца для зон сжатия и растяжения расчетным методом.

По полученным расчетным и экспериментальным данным строят зависимости коэрцитивной силы, измеренной в контрольных точках, от величины продольных напряжений Нс=ƒ(σизг), для различных значений внутреннего давления Рвн (фиг. 2).

Откапывают участок нефтепровода с потенциально высокими изгибными напряжениями, удаляют изоляцию. Устанавливают, что на момент измерения давление в нефтепроводе составляет 4,6 МПа.

Намечают сечение трубы для проведения контроля. В выбранном сечении отмечают 12 точек контроля, расположенных с шагом 1 час (30 град.) (12 часов - верх трубы, 6 часов - низ трубы) (фиг. 3). Измеряют коэрцитивную силу на каждой из выбранных точек, ориентируя датчик вдоль оси трубопровода.

Выбирают максимальное и минимальное значение. Строят лепестковую диаграмму (фиг. 3).

Устанавливают, что на лепестковой диаграмме (фиг. 3) имеются два максимальных значения коэрцитивной силы (Hc=700 А/м), расположенных в ориентации 1 и 2 часа и одно минимальное (Hc=575 А/м), расположенное в ориентации 7 часов. Поскольку точки 1 и 7 диаметрально противоположны, плоскость изгиба проходит через указанные точки с углом относительно вертикали у.

Для определения напряженного состояния используют зависимость коэрцитивной силы от величины продольных напряжений Нс=ƒ(σизг) для внутреннего давления Рвн=4,5 МПа (фиг. 2).

По полученной зависимости (фиг. 2) определяют, что изгибные напряжения в зоне сжатия составляют около 56 МПа, в зоне растяжения - 110 МПа.

Способ определения изгибных напряжений в стальных трубопроводах, включающий изготовление образца в виде полого цилиндра из материала, аналогичного материалу трубопровода, пошаговое нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды и его изгибом, получение зависимости коэрцитивной силы от величины механических напряжений в образце, отличающийся тем, что назначают две контрольные точки на окружности образца: одну - в зоне растяжения при изгибе, вторую - в зоне сжатия при изгибе, нагружение образца производят одновременным действием изгиба и внутреннего давления среды, измеряют коэрцитивную силу в контрольных точках, ориентируя датчик коэрцитиметра вдоль оси образца, строят графики зависимости коэрцитивной силы Н от изгибных напряжений σ, при различных давлениях среды Р, определяют сечение трубопровода с потенциально высокими изгибными напряжениями, намечают точки контроля окружности трубопровода в выбранном сечении, измеряют коэрцитивную силу в выбранных точках, ориентируя датчик коэрцитиметра таким образом, чтобы направление магнитного потока в датчике совпадало с осью трубопровода, выбирают среди измеренных значений максимальное и минимальное, при этом эти значения должны относиться к диаметрально противоположным точкам сечения трубопровода, считают, что точка с минимальным значением коэрцитивной силы связана с зоной максимальных растяжений, с максимальным значением - с зоной максимального сжатия, определяют угол плоскости изгиба, проходящей через точки максимальных растяжений и сжатия, измеряют давление в трубопроводе и определяют изгибные напряжения в трубопроводе при помощи полученной зависимости для соответствующего давления.
Способ определения механических напряжений в стальном трубопроводе
Способ определения механических напряжений в стальном трубопроводе
Способ определения механических напряжений в стальном трубопроводе
Способ определения механических напряжений в стальном трубопроводе
Источник поступления информации: Роспатент

Показаны записи 1-10 из 151.
20.03.2016
№216.014.caf1

Турбулентный реометр и способ определения эффективности противотурбулентных присадок (птп), реализуемый посредством турбулентного реометра

Изобретение относится к области реологии разбавленных растворов полимеров, а также поверхностно-активных веществ (ПАВ), и может быть использовано для определения эффективности противотурбулентных присадок (ПТП), используемых при перекачке углеводородных жидкостей по трубопроводам. Турбулентный...
Тип: Изобретение
Номер охранного документа: 0002577797
Дата охранного документа: 20.03.2016
25.08.2017
№217.015.99a7

Способ подготовки магистрального нефтепровода для транспортировки светлых нефтепродуктов

Изобретение относится к области трубопроводного транспорта, в частности к способам очистки внутренней поверхности магистральных нефтепроводов. Осуществляют химическую очистку внутренней поверхности нефтепровода, предварительного разделенного на очищаемые участки, путем пропуска по всей длине...
Тип: Изобретение
Номер охранного документа: 0002609786
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.a33e

Способ внутритрубного ультразвукового контроля

Использование: для обнаружения дефектов в стенке трубопровода. Сущность изобретения заключается в том, что с помощью ультразвуковых преобразователей возбуждают импульсы упругой волны в перекачиваемой по трубопроводу жидкости под заданным углом к внутренней поверхности трубопровода по ходу...
Тип: Изобретение
Номер охранного документа: 0002607258
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a3e7

Способ определения точного объема вынесенного металла коррозионных дефектов по ультразвуковым данным втд

Использование: для определения точного объема вынесенного металла коррозионных дефектов. Сущность изобретения заключается в том, что способ определения точного объема вынесенного металла коррозионных дефектов состоит из следующих этапов: предварительная загрузка данных о потерях металла;...
Тип: Изобретение
Номер охранного документа: 0002607359
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a57c

Способ оценки геометрических размеров дефектов стенки трубной секции и сварных швов по данным ультразвукового внутритрубного дефектоскопа с помощью поиска связанных индикаций

Использование: для оценки геометрических размеров дефектов стенки трубной секции и сварных швов. Сущность изобретения заключается в том, что по данным ультразвукового внутритрубного дефектоскопа с помощью поиска связанных индикаций оценивают длину, ширину и глубину дефекта. Технический...
Тип: Изобретение
Номер охранного документа: 0002607766
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b00d

Способ контроля технологических режимов работы трубопровода

Изобретение относится к области магистрального транспорта нефти и нефтепродуктов, а именно к способу контроля технологических режимов в процессе эксплуатации трубопровода на основе обработки данных системы диспетчерского контроля управления по фактической цикличности рабочего давления...
Тип: Изобретение
Номер охранного документа: 0002611132
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b2d2

Способ оценки параметров движения средств очистки и диагностики (сод) по трубопроводу

Изобретение относится к трубопроводному транспорту, в частности к способу автоматизации процесса оценки параметров движения средств очистки и диагностики (далее СОД) по трубопроводу в зависимости от режима работы трубопровода и свойств перекачиваемого продукта для совершенствования процесса...
Тип: Изобретение
Номер охранного документа: 0002613754
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b7e8

Резервуар для перевозки жидкостей с изменяющейся геометрией корпуса

Резервуар для перевозки жидкостей с изменяющейся геометрией корпуса содержит крышу, днище, попарно подвижно соединенные боковые и торцовые складные модули, съемную горловину, два силовых цилиндра, сливо-наливной и технологический патрубки и нагнетательные шланги. Резервуар снабжен эластичной...
Тип: Изобретение
Номер охранного документа: 0002614935
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b904

Способ маркировки трубных изделий, трубное изделие с маркировкой и система идентификации трубных изделий

Изобретение относится к области маркировки и последующей идентификации трубных изделий. Технический результат - обеспечение возможности идентификации завода-изготовителя трубных секций как во время строительства и реконструкции трубопровода, так и в процессе эксплуатации трубопровода подземной...
Тип: Изобретение
Номер охранного документа: 0002615329
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bc3b

Способ термостабилизации грунтов оснований свайных фундаментов опор трубопровода

Изобретение относится к теплотехнике в области строительства, а именно к термостабилизации грунтовых оснований свайных фундаментов опор трубопровода и трубопроводов подземной прокладки, расположенных на многолетнемерзлых грунтах. Способ термостабилизации грунтов оснований свайных фундаментов...
Тип: Изобретение
Номер охранного документа: 0002616029
Дата охранного документа: 12.04.2017
Показаны записи 1-10 из 51.
10.01.2013
№216.012.19a8

Способ выявления отслаиваний покрытия подземных трубопроводов

Изобретение относится к области оценки технического состояния подземных магистральных трубопроводов и может найти применение при выявлении участков трубопроводов с отслаиванием антикоррозионного покрытия. Задачей способа является снижение трудоемкости и повышение безопасности способа. Способ...
Тип: Изобретение
Номер охранного документа: 0002472060
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1db4

Способ определения местоположения источника блуждающего тока

Изобретение относится к области защиты подземных металлических сооружений от коррозии блуждающими токами и может быть использовано в нефтяной и газовой отраслях промышленности для определения наличия и местоположения источника блуждающих токов. Сущность: выбирают не менее двух участков вблизи...
Тип: Изобретение
Номер охранного документа: 0002473098
Дата охранного документа: 20.01.2013
10.10.2013
№216.012.7437

Способ определения температуры кристаллизации парафинов в нефти

Изобретение относится к области определения физических параметров пластовых флюидов и может быть использовано в промышленных и научно-исследовательских лабораториях для определения температуры кристаллизации парафинов в нефти. Согласно заявленному способу выполняют нагрев образца нефти с...
Тип: Изобретение
Номер охранного документа: 0002495408
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.832b

Способ выявления внутренних расслоений стенок труб

Использование: для выявления внутренних расслоений стенок труб. Сущность заключается в том, что осуществляют подготовку поверхности трубы к ультразвуковому контролю, сканирование ее ультразвуковым преобразователем, подключенным к прибору, и выявление мест расслоений по показаниям прибора, при...
Тип: Изобретение
Номер охранного документа: 0002499255
Дата охранного документа: 20.11.2013
10.04.2014
№216.012.b3f6

Маркер для внутритрубной диагностики

Изобретение относится к магнитной внутритрубной диагностике и может использоваться в нефтегазовой промышленности при определении координат дефектов металла труб подземных трубопроводов. Маркер состоит из двух маркерных накладок, выполненных из ферромагнитного материала, а именно из...
Тип: Изобретение
Номер охранного документа: 0002511787
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bccd

Способ определения касательных напряжений в стальных трубопроводах

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения касательных напряжений в стальных трубопроводах надземной прокладки. Техническая задача решается тем, что в способе определения касательных напряжений в стальных трубопроводах,...
Тип: Изобретение
Номер охранного документа: 0002514072
Дата охранного документа: 27.04.2014
10.07.2014
№216.012.da80

Способ определения механических напряжений в стальных трубопроводах

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения механических напряжений в стальных трубопроводах подземной прокладки. Сущность изобретения заключается в том, что способ определения механических напряжений в стальных...
Тип: Изобретение
Номер охранного документа: 0002521714
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db55

Способ выполнения анодного заземления

Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает бурение скважины преимущественно горизонтально, вдоль...
Тип: Изобретение
Номер охранного документа: 0002521927
Дата охранного документа: 10.07.2014
20.12.2014
№216.013.107b

Способ определения температуры хладноломкости стали

Изобретение относится к области испытания физико-механических свойств металлов и может применяться для определения температуры хладноломкости конструкционных низколегированных сталей трубопроводов. Сущность: определяют механические характеристики стали при различных температурах, строят график...
Тип: Изобретение
Номер охранного документа: 0002535642
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14ea

Способ выявления локальных дефектов металла подземного трубопровода

Изобретение относится к измерительной технике, представляет собой способ выявления локальных дефектов металла подземного трубопровода и может применяться для диагностики и контроля состояния подземных трубопроводов, изготовленных из ферромагнитных материалов. При реализации способа измеряют...
Тип: Изобретение
Номер охранного документа: 0002536778
Дата охранного документа: 27.12.2014
+ добавить свой РИД