×
12.04.2023
223.018.45f3

Результат интеллектуальной деятельности: Способ калибровки системы контроля напряженно-деформированного состояния заглубленного трубопровода

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам мониторинга состояния заглубленных трубопроводов. Для учета начальных напряжений, возникающих при сборке трубопровода путем сварки из отдельных труб из-за неровностей поверхности земли и приводящих к изгибным деформациям и соответствующим напряжениям в теле трубопровода, выполняют измерения реального положения трубопровода в пространстве и вычисляют начальные изгибные деформации, что позволяет при калибровке исключить систематическую ошибку. Кроме того, измерения реального положения трубопровода в пространстве позволяет при калибровке исключить систематическую ошибку, вызванную несовпадением реального пространственного положения точки на поверхности волоконно-оптического сенсора продольной деформации и значением координаты этой точки в системе контроля напряженно-деформированного состояния заглубленного трубопровода. Изобретение обеспечивает увеличение точности калибровочных операций при настройке систем мониторинга состояния заглубленного трубопровода путем устранения систематических погрешностей при помощи калибровки системы контроля напряженно-деформированного состояния заглубляемого трубопровода, использующей волоконно-оптические сенсоры продольной деформации. 1 ил.

Изобретение относится к способам диагностики состояния заглубляемых трубопроводов, предназначенных для транспортировки газообразных и жидких веществ, например, природного газа или нефти, а именно к подготовительным, калибровочным операциям при настройке и подготовке систем диагностики к работе.

Известен способ мониторинга напряженно-деформированного состояния выделенных участков магистрального трубопровода по которому: на основе предварительного обследования выявляют наиболее опасные участки заглубленного магистрального трубопровода в которых могут произойти внешние негативные воздействия (сейсмические воздействия, движения тектонических блоков, карсты, оползни, курумы, морозное пучение, всплывание трубопровода в результате затопления местности где трубопровод походит и т.д.) приводящие к деформациям магистрального трубопровода; помещают на трубопроводе в местах опасных участков заглубленного магистрального трубопровода датчики контроля давления, которые присоединяются к информационной сети, при превышении на датчиках уровня внешнего воздействия выше порогового значения информационная система формирует сигнал опасности, который выводится на экран автоматизированного рабочего места диспетчера, который, в свою очередь, организует меры и мероприятия предотвращения негативной деформации магистрального трубопровода [Способ мониторинга и оценки технического состояния магистрального трубопровода и система для его реализации, патент RU 2 451 874 С1 или Способ мониторинга технического состояния трубопровода и система для его осуществления, патент RU2 563 419 С2]. Калибровочные операции по данному способу связаны с проверкой исправности датчиков контроля давления, и их настройкой при присоединении к информационной сети.

Недостатком указанного способа является то, что отсутствуют настроечные или калибровочные операции для всей системы в целом, а анализ внешнего механического воздействия на трубопровод носит точечный характер. Это существенно ограничивает выявление причин возникновения напряженно-деформированного состояния выделенных для контроля участков магистрального трубопровода.

Известен по способ настройки системы контроля напряженно-деформированного состояния заглубленного трубопровода [А.Л. Ермилов, А.В. Гречанов, С.А. Щекочихин Мониторинг деформации трубопровода и подвижек грунта на объекте магистральный с газопровод «Сахалин-Хабаровск-Владивосток» // Фотон-экспресс, №5 (125), сентябрь, 2015, стр. 14-17 или С.В. Смирнов, Х.В. Иванов Волоконно-оптические технологии для создания безопасных условий эксплуатации трубопроводных систем в труднодоступных и сложных природно-климатических регионах // Безопасность Труда в Промышленности, 2017, №2, стр. 33-39, www.safety.ru].

Способ заключается в том, что собирают на поверхности заглубляемый трубопровод путем соединения между собой отрезков труб с радиусом R параллельно оси трубопровода при помощи сварки, на контролируемом участке трубопровода, к внешней поверхности трубопровода, к его изоляции прикрепляют N=3 распределенных волоконно-оптических сенсора продольной деформации, при этом в каждом i-м поперечном сечении трубопровода каждый j-й сенсор крепится в точке соответствующей величине xi погонной длины оси трубопровода с угловыми координатами γij с первоначальным натяжением εij СЕНС НАЧ, каждый j-й сенсор подключают к измерительной аппаратуре системы контроля напряженно-деформированного состояния трубопровода, способной выполнять измерения значений продольной деформации εij СЕНС для каждого j-го сенсора в каждом i-м поперечном сечении трубопровода, соответствующей величине xi погонной длины оси трубопровода, выполняют калибровочную настройку системы, на основе того, что в каждом i-м поперечном сечении трубопровода соответствующим величине xi погонной длины оси трубопровода и точке крепления j-го сенсора к трубопроводу калибровочное значение продольной деформации трубопровода εij ФИКС КАЛ равно нулю и измеренное при калибровке измерительной аппаратурой системы контроля напряженно-деформированного состояния трубопровода значение продольной деформации εij СЕНС КАЛ этого j-го распределенного волоконно-оптического сенсора для значения величины погонной длины xi равно величине первоначального натяжения εij СЕНС НАЧ, после чего трубопровод помещают в грунт и осуществляют непрерывный анализ напряженно-деформированного состояния трубопровода путем непрерывного сравнения текущих зафиксированных значений продольной деформации трубопровода εij ФИКС, определяемых как:

εij ФИКС = εij СЕНС - εij СЕНС НАЧ.

где εij ФИКС - значение, зафиксированное j-м сенсором системы контроля напряженно-деформированного состояния трубопровода в i-м поперечном сечении трубопровода;

εij СЕНС - значение продольной деформации, измеренные в j-м сенсором в i-м поперечном сечении трубопровода;

εij СЕНС НАЧ - первоначальное натяжение j-го сенсора в i-м поперечном сечении трубопровода

с соответствующими значениями продольной деформации трубопровода при первоначальном и предыдущих измерениях, и с заданными пороговыми значениями продольной деформации трубопровода, по результатам сравнения выявляют участки напряженно-деформированного состояния трубопровода с повышенной деформацией, а информация о погонной координате xi ПОВ ДЕФ, угловой координате γij ПОВ ДЕВ и параметрах продольной деформации трубопровода на участке с повышенной деформацией выводят на экран автоматизированного рабочего места диспетчера.

Способ настройки системы контроля напряженно-деформированного состояния заглубленного трубопровода учитывает то, что сборка происходит путем присоединения новой секции к уже собранному участку трубопровода. При этом методика сборки трубопровода подразумевает соосное присоединение новой секции к уже собранному участку трубопровода, которые затем свариваются. Считается, что такая процедура сборки трубопровода позволяет избежать напряжений, вызывающих продольные деформации трубопровода. Эти напряжения будут возникать потом после перемещения трубопровода в траншею и засыпки трубопровода грунтом при воздействиях на трубопровод внешних факторов, таких как пучение, всплытие при затоплении грунтовыми и вешними водами, смещениях грунта в результате оползней и т.д.

Поэтому трубопровод при установке на него распределенных волоконно-оптических сенсоров продольной деформации считают не напряженным и, соответственно, не деформированным. В распределенных волоконно-оптических сенсорах продольной деформации создают первоначальное натяжение для того, чтобы у заглубленного в грунт трубопровода можно было фиксировать деформации, как растяжения, так и сжатия.

Способ настройки системы контроля напряженно-деформированного состояния заглубленного трубопровода выбран в качестве прототипа.

Недостатком прототипа является то, что не учитывается тот факт, что распределенные волоконно-оптические сенсоры продольной деформации прикрепляются к изоляции трубопровода уже в собранном состоянии. К этому моменту в нем действительно нет продольных деформаций, связанных с продольным напряжением, вызванным растяжением или сжатием всего трубопровода вдоль оси, так как именно для этого предусмотрена методика сборки трубопровода, при которой производится соосное присоединение и сварка новой секции к уже собранному участку трубопровода.

Однако в собранном состоянии трубопровод находится, как правило, на земной поверхности рядом с траншеей, в которую он будет перемещен перед засыпкой грунтом. В результате трубопровод принимает изгибные деформации поверхности земли. Указанные деформации вызывают напряжения в теле трубопровода, величина которых определяется величиной радиуса изгиба трубопровода.

Таким образом, предположение, что на момент калибровки в материале трубопровода отсутствуют напряжения не верно. Игнорирование этих напряжений, связанных с изгибными деформациями, будет приводить к систематическим ошибкам при мониторинге напряженно-деформированного состояния трубопровода из-за неправильной начальной калибровки.

Кроме того, как и для любой информационной системы контроля распределенного объекта, в системе должна быть информационная модель расположения трубопровода в пространстве. Для таких моделей характерен рост систематической ошибки, вызванной несовпадением реального пространственного положения точки на поверхности волоконно-оптического сенсора продольной деформации и значением координаты этой точки в системе контроля напряженно-деформированного состояния заглубленного трубопровода.

Целью заявленного способа калибровки системы контроля напряженно-деформированного состояния заглубляемого трубопровода является исключение систематических ошибок в измерениях параметров напряженно-деформированного состояния заглубляемого трубопровода, при котором учитываются изгибные деформации поверхности земли, появляющиеся при размещении заглубляемого трубопровода на поверхности земли в процессе его сборки, и реальное пространственное положение точки на поверхности волоконно-оптического сенсора продольной деформации.

Техническим результатом является увеличение точности калибровочных операций при настройке систем мониторинга состояния заглубленного трубопровода путем устранения систематических погрешностей при помощи калибровки системы контроля напряженно-деформированного состояния заглубляемого трубопровода использующей волоконно-оптические сенсоры продольной деформации.

Технический результат достигается тем, что собирают на поверхности заглубляемый трубопровод путем соединения между собой отрезков труб с радиусом R параллельно оси трубопровода при помощи сварки, на контролируемом участке трубопровода, к внешней поверхности трубопровода, к его изоляции прикрепляют N распределенных волоконно-оптических сенсора продольной деформации, при этом в каждом i-м поперечном сечении трубопровода каждый j-й сенсор крепится в точке соответствующей величине xi погонной длины оси трубопровода с угловыми координатами γij с первоначальным натяжением εij СЕНС НАЧ, каждый j-й сенсор подключают к измерительной аппаратуре системы контроля напряженно-деформированного состояния трубопровода, способной выполнять измерения значений продольной деформации εij СЕНС для каждого j-го сенсора в каждом i-м поперечном сечении трубопровода, соответствующей величине xi погонной длины оси трубопровода, выполняют калибровочную настройку системы, при которой в каждом i-м поперечном сечении трубопровода соответствующим величине xi погонной длины оси трубопровода и точке крепления j-го сенсора к трубопроводу с учетом величины первоначального натяжения ставят в соответствие известное калибровочное значение продольной деформации трубопровода с зафиксированным измерительной аппаратурой системы контроля напряженно-деформированного состояния трубопровода значением продольной деформации этого j-го распределенного волоконно-оптического сенсора для значения величины погонной длины xi, после чего трубопровод помещают в грунт и осуществляют непрерывный анализ напряженно-деформированного состояния трубопровода путем непрерывного сравнения текущих зафиксированных значений продольной деформации трубопровода εij ФИКС с соответствующими значениями продольной деформации трубопровода при первоначальном и предыдущих измерениях, и с заданными пороговыми значениями продольной деформации трубопровода, по результатам сравнения выявляют участки напряженно-деформированного состояния трубопровода с повышенной деформацией, а информация о погонной координате xi ПОВ ДЕФ, угловой координате γij ПОВ ДЕФ и параметрах продольной деформации трубопровода на участке с повышенной деформацией выводят на экран автоматизированного рабочего места диспетчера, при этом при калибровке при помощи системы контроля напряженно-деформированного состояния трубопровода выполняют измерения значений продольной деформации εij СЕНС КАЛ и убеждаются, что зафиксированная величина при калибровке близка к заданной величине первоначального натяжения εij СЕНС КАЛ ≈ εij СЕНС НАЧ, при калибровочной настройке системы до заглубления трубопровода отмечают контрольные точки на поверхности трубопровода на поверхности распределенных волоконно-оптических сенсоров продольной деформации, для каждого j-го сенсора при включенной системе осуществляют локальное упругое механическое воздействие на сенсор в выбранных контрольных точках, фиксируют наличие реакции на это воздействие в системе и осуществляют привязку каждой контрольной точки к текущей величине xi погонной длины оси трубопровода с угловыми координатами γij в системе контроля напряженно-деформированного состояния трубопровода, с помощью измерительного оборудования на контролируемом участке трубопровода определяют положение в пространстве точек на поверхности трубопровода на поверхности распределенных волоконно-оптических сенсоров продольной деформации, включая контрольные точки, на основе выполненных измерений создают информационную геометрическую модель трубопровода, в которой определяют положение в пространстве оси трубопровода на основе решения геометрической задачи определения координаты точки на оси цилиндра по координатам нескольких точек на его поверхности, при этом для каждого i-го поперечного сечения трубопровода соответствующего величине xi погонной длины оси трубопровода и каждого j-го сенсора определяют угловую координату γij точки его крепления к трубопроводу, после этого для каждого i-го поперечного сечения трубопровода вычисляют калибровочные значения радиуса ρi КАЛ изгиба трубопровода и калибровочные значения угла γ0i КАЛ - перпендикулярного плоскости изгиба трубопровода в результате изгибной деформации, с помощью которых вычисляют калибровочные зависимости значений продольной деформации трубопровода εij КАЛ в точках крепления сенсоров к трубопроводу от угловых координат γij как:

εij КАЛ = R sin(γ0i КАЛ - γij)/ρi КАЛ,

где εij КАЛ - калибровочные значения продольной деформации трубопровода в точках крепления сенсоров к трубопроводу;

γij - угловая координата погонной длины и углового положения точки крепления сенсора;

R - радиус трубопровода;

γ0i КАЛ - калибровочные значения угла, перпендикулярного плоскости изгиба трубопровода;

ρi КАЛ - калибровочные значения радиуса изгиба трубопровода.

после калибровочной настройки системы значение продольной деформации, зафиксированное системой контроля напряженно-деформированного состояния трубопровода εij ФИКС, определяется как:

εij ФИКС = εij СЕНС + εij КАЛ - εij СЕНС НАЧ,

после перемещения трубопровода в траншею до его засыпки грунтом снова с помощью измерительного оборудования на контролируемом участке трубопровода определяют положение в пространстве точек на поверхности трубопровода на поверхности распределенных волоконно-оптических сенсоров продольной деформации, включая контрольные точки, и корректируют информационную геометрическую модель трубопровода.

Суть изобретения заключается в том, что при калибровке создается информационная геометрическая модель трубопровода, в которой будут исключена систематическая ошибка, вызванная несовпадением реального пространственного положения точки на поверхности волоконно-оптического сенсора продольной деформации и значением координаты этой точки в системе контроля напряженно-деформированного состояния заглубленного трубопровода. Это позволяет достоверно характеризовать положение в пространстве трубопровода пространственным положением его оси. При этом текущая координата оси трубопровода может быть определена по измерениям геометрического положения трубопровода в пространстве, а затем скорректирована на основе уточненных измерений при перемещении трубопровода на дно траншеи. Относительно этой текущей координаты могут быть выполнены вычисления значения радиуса изгиба трубопровода и определена плоскость, в которой происходит изгибная деформация, которую удобно характеризовать углом направления перпендикуляра к этой плоскости.

Операция локального упругого механического воздействия на сенсор в точке, пространственные, координаты которой известны, позволяет при калибровке исключить систематическую ошибку, вызванную несовпадением реального пространственного положения точки на поверхности волоконно-оптического сенсора продольной деформации и значением координаты этой точки в системе контроля напряженно-деформированного состояния заглубленного трубопровода.

Кроме того, при калибровке исключается систематическая ошибка, вызванная тем, что при сборке трубопровода путем сварки из отдельных труб на поверхности земли, из-за неровностей поверхности земли появляются изгибные напряжения. Эти напряжения измеряются и учитываются при дальнейшем контроле напряженно-деформированного состояния заглубленного трубопровода. Для этого в значение продольной деформации, зафиксированное измерительной аппаратурой системы контроля напряженно-деформированного состояния трубопровода, вносят поправку, связанную не только с первоначальным натяжением сенсора, но и учитывающую калибровочные значения продольной деформации трубопровода в точках крепления сенсоров к трубопроводу от угловых координат.

В результате в процессе калибровки будут исключены систематические ошибки, вызванные изгибными деформациями, которые заглубляемый трубопровод неизбежно принимает при помещении на земную поверхность в процессе сборки. Кроме того, точность калибровки повысится при выполнении мероприятий по исключении систематической ошибки, вызванную несовпадением реального пространственного положения точки на поверхности волоконно-оптического сенсора продольной деформации и значением координаты этой точки в системе контроля напряженно-деформированного состояния заглубленного трубопровода.

Предлагаемый способ калибровки системы контроля напряженно-деформированного состояния заглубленного трубопровода может быть реализован при настройке системы контроля напряженно-деформированного состояния заглубленного трубопровода. Блок-схема системы контроля напряженно-деформированного состояния заглубленного трубопровода представлена на фиг., здесь 1 - заглубляемый трубопровод, 2, 4, 6 распределенные волоконно-оптические сенсоры, 3, 5, 7 - блоки оконечного оборудования распределенных волоконно-оптических сенсоров, 8 - блок обработки информации, 9 -автоматизированное рабочее место диспетчера.

Распределенные волоконно-оптические сенсоры 2, 4, 6 с блоками оконечного оборудования 3, 5, 7 прикреплены к изоляции трубопровода 1. Распределенные волоконно-оптические сенсоры с блоками оконечного оборудования 2,4,6 располагаются на поверхности заглубляемого трубопровода 1 так, чтобы в каждом поперечном сечении заглубляемого трубопровода дуги между распределенными волоконно-оптическими сенсорами составляли 120 градусов, при этом дуга между двумя нижними сенсорами так же составляет 120 градусов.

Выходы блоков оконечного оборудования 3,5,7 с помощью информационных кабелей присоединены к входу блока обработки информации 8. Выход блока обработки информации к с помощью информационной шины присоединен ко входу автоматизированного рабочего места диспетчера 9.

Настройка системы контроля напряженно-деформированного состояния заглубленного трубопровода выполняется следующим образом:

1. Собирают на поверхности заглубляемый трубопровод 1 путем прикрепления между собой отрезков труб с радиусом R параллельно оси трубопровода при помощи сварки.

2. На контролируемом участке трубопровода 1, к внешней поверхности трубопровода 1, к его изоляции прикрепляют три распределенных волоконно-оптических сенсора продольной деформации 2, 4, 6, при этом в каждом i-м поперечном сечении трубопровода каждый j-й сенсор крепится в точке соответствующей величине хi погонной длины оси трубопровода с угловыми координатами γij с первоначальным натяжением εij СЕНС НАЧ.

3. Каждый из сенсоров 2, 4, 6 подключают к своим блокам оконечного оборудования, соответственно 3, 5, 7.

4. Блоки оконечного оборудования 3, 5, 7 подключают к блоку обработки информации 8, соединенному с автоматизированным рабочим местом диспетчера 9, образующими аппаратуру системы контроля напряженно-деформированного состояния трубопровода, способной выполнять измерения значений продольной деформации εij СЕНС для каждого j-го сенсора в каждом i-м поперечном сечении трубопровода, соответствующей величине xi погонной длины оси трубопровода.

5. При калибровке при помощи блока обработки информации 8 и автоматизированного рабочего места диспетчера 9 выполняют измерения значений продольной деформации εij СЕНС КАЛ и убеждаются, что зафиксированная величина при калибровке близка к заданной величине первоначального натяжения εij СЕНС КАЛ ≈ εij СЕНС НАЧ.

6. На поверхности сенсоров 2,4,6 отмечают контрольные точки.

7. Для каждого j-го сенсора из сенсоров 2, 4, 6 при включенной аппаратуре системы контроля напряженно-деформированного состояния трубопровода осуществляют локальное упругое механическое воздействие на сенсор в выбранных контрольных точках и фиксируют наличие реакции на это воздействие в системе и осуществляют привязку каждой контрольной точки на поверхности сенсоров 2, 4, 6 к текущей величине xi погонной длины оси трубопровода с угловыми координатами γij в системе контроля напряженно-деформированного состояния трубопровода.

8. С помощью измерительного оборудования на контролируемом участке трубопровода 1 определяют положение в пространстве точек на поверхности сенсоров 2, 4, 6, включая контрольные точки.

9. На основе выполненных измерений создают информационную геометрическую модель трубопровода 1, в которой определяют положение в пространстве оси трубопровода на основе решения геометрической задачи определения координаты точки на оси цилиндра по координатам нескольких точек на его поверхности, при этом для каждого i-го поперечного сечения трубопровода 1 соответствующего величине xi погонной длины оси трубопровода и каждого j-го сенсора определяют угловую координату γij точки его крепления к трубопроводу 1.

10. Для каждого i-го поперечного сечения трубопровода 1 вычисляют калибровочные значения радиуса ρi КАЛ изгиба трубопровода и калибровочные значения угла γ0i КАЛ - перпендикулярного плоскости изгиба трубопровода в результате изгибной деформации, с помощью которых фиксируют калибровочные зависимости значений продольной деформации трубопровода εij КАЛ в точках крепления сенсоров 2, 4, 6 к трубопроводу 1 от угловых координат γij как:

εij КАЛ = R sin(γ0i КАЛ - γij)/ρi КАЛ.

11. Выполняют калибровочную настройку системы, при которой в каждом i-м поперечном сечении трубопровода соответствующим величине xi погонной длины оси трубопровода 1 и точке крепления j-го сенсора к трубопроводу 1 ставят в соответствие с учетом величины первоначального натяжения известное калибровочное значение продольной деформации трубопровода с зафиксированным измерительной аппаратурой системы контроля напряженно-деформированного состояния трубопровода значением продольной деформации этого j-го распределенного волоконно-оптического сенсора для значения величины погонной длины xi как:

εij ФИКС = εij СЕНС + εij КАЛ - εij СЕНС НАЧ.

12. После перемещения трубопровода 1 в траншею до его засыпки грунтом снова с помощью измерительного оборудования на контролируемом участке трубопровода 1 определяют положение в пространстве точек на поверхности сенсоров 2, 4, 6, включая контрольные точки, и корректируют информационную геометрическую модель трубопровода 1.

Система контроля напряженно-деформированного состояния заглубленного трубопровода, при настройке которой может быть реализован предлагаемый способ калибровки системы контроля напряженно-деформированного состояния заглубленного трубопровода, может быть реализована при использовании оборудования прототипа [СВ. Смирнов, Х.В. Иванов Волоконно-оптические технологии для создания безопасных условий эксплуатации трубопроводных систем в труднодоступных и сложных природно-климатических регионах // Безопасность Труда в Промышленности, 2017, №2, стр. 33-39, www.safety.ru]. При этом при монтаже распределенные волоконно-оптические сенсоры 2, 4, 6 закрепляются на поверхности заглубляемого трубопровода 1 параллельно его оси так, что в каждом поперечном сечении заглубляемого трубопровода точки крепления разделены друг от друга дугами величиной 120 градусов, при этом первый распределенный волоконно-оптический сенсор соответствуют угловому положению 0 градусов (в верхней точке), второй распределенный волоконно-оптический сенсор соответствуют угловому положению 120 градусов (влево от верхней точки), третий распределенный волоконно-оптические сенсор соответствуют угловому положению -120 градусов (вправо от верхней точки).

Контрольные точки могут отмечаться при помощи контрастных маркеров, наносимых при помощи краски, либо путем приклейки светоотражающих стеклянных стразов.

В качестве измерительного оборудования для определения положения в пространстве точек на поверхности трубопровода на поверхности распределенных волоконно-оптических сенсоров 2, 4, 6 продольной деформации 1, включая контрольные точки, может использоваться лазерный сканер типа Leica RTC360.

Информационная геометрическая модель трубопровода может создаваться с помощью одного из программных моделирующих комплексов, широко представленных сегодня на рынке, в частности, например, при помощи программного моделирующего комплекса National Instruments Labview 2012.

Таким образом, предлагаемое техническое решение позволяет увеличить точность калибровочных операций при настройке систем мониторинга состояния заглубленного трубопровода путем устранения систематических погрешностей при помощи калибровки системы контроля напряженно-деформированного состояния заглубляемого трубопровода использующих волоконно-оптические сенсоры продольной деформации. При калибровке учитываются изгибные деформации, появляющиеся при размещении заглубляемого трубопровода на поверхности земли в процессе его сборки, и реальное пространственное положение волоконно-оптических сенсоров продольной деформации.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 151.
20.03.2016
№216.014.caf1

Турбулентный реометр и способ определения эффективности противотурбулентных присадок (птп), реализуемый посредством турбулентного реометра

Изобретение относится к области реологии разбавленных растворов полимеров, а также поверхностно-активных веществ (ПАВ), и может быть использовано для определения эффективности противотурбулентных присадок (ПТП), используемых при перекачке углеводородных жидкостей по трубопроводам. Турбулентный...
Тип: Изобретение
Номер охранного документа: 0002577797
Дата охранного документа: 20.03.2016
25.08.2017
№217.015.99a7

Способ подготовки магистрального нефтепровода для транспортировки светлых нефтепродуктов

Изобретение относится к области трубопроводного транспорта, в частности к способам очистки внутренней поверхности магистральных нефтепроводов. Осуществляют химическую очистку внутренней поверхности нефтепровода, предварительного разделенного на очищаемые участки, путем пропуска по всей длине...
Тип: Изобретение
Номер охранного документа: 0002609786
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.a33e

Способ внутритрубного ультразвукового контроля

Использование: для обнаружения дефектов в стенке трубопровода. Сущность изобретения заключается в том, что с помощью ультразвуковых преобразователей возбуждают импульсы упругой волны в перекачиваемой по трубопроводу жидкости под заданным углом к внутренней поверхности трубопровода по ходу...
Тип: Изобретение
Номер охранного документа: 0002607258
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a3e7

Способ определения точного объема вынесенного металла коррозионных дефектов по ультразвуковым данным втд

Использование: для определения точного объема вынесенного металла коррозионных дефектов. Сущность изобретения заключается в том, что способ определения точного объема вынесенного металла коррозионных дефектов состоит из следующих этапов: предварительная загрузка данных о потерях металла;...
Тип: Изобретение
Номер охранного документа: 0002607359
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a57c

Способ оценки геометрических размеров дефектов стенки трубной секции и сварных швов по данным ультразвукового внутритрубного дефектоскопа с помощью поиска связанных индикаций

Использование: для оценки геометрических размеров дефектов стенки трубной секции и сварных швов. Сущность изобретения заключается в том, что по данным ультразвукового внутритрубного дефектоскопа с помощью поиска связанных индикаций оценивают длину, ширину и глубину дефекта. Технический...
Тип: Изобретение
Номер охранного документа: 0002607766
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b00d

Способ контроля технологических режимов работы трубопровода

Изобретение относится к области магистрального транспорта нефти и нефтепродуктов, а именно к способу контроля технологических режимов в процессе эксплуатации трубопровода на основе обработки данных системы диспетчерского контроля управления по фактической цикличности рабочего давления...
Тип: Изобретение
Номер охранного документа: 0002611132
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b2d2

Способ оценки параметров движения средств очистки и диагностики (сод) по трубопроводу

Изобретение относится к трубопроводному транспорту, в частности к способу автоматизации процесса оценки параметров движения средств очистки и диагностики (далее СОД) по трубопроводу в зависимости от режима работы трубопровода и свойств перекачиваемого продукта для совершенствования процесса...
Тип: Изобретение
Номер охранного документа: 0002613754
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b7e8

Резервуар для перевозки жидкостей с изменяющейся геометрией корпуса

Резервуар для перевозки жидкостей с изменяющейся геометрией корпуса содержит крышу, днище, попарно подвижно соединенные боковые и торцовые складные модули, съемную горловину, два силовых цилиндра, сливо-наливной и технологический патрубки и нагнетательные шланги. Резервуар снабжен эластичной...
Тип: Изобретение
Номер охранного документа: 0002614935
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b904

Способ маркировки трубных изделий, трубное изделие с маркировкой и система идентификации трубных изделий

Изобретение относится к области маркировки и последующей идентификации трубных изделий. Технический результат - обеспечение возможности идентификации завода-изготовителя трубных секций как во время строительства и реконструкции трубопровода, так и в процессе эксплуатации трубопровода подземной...
Тип: Изобретение
Номер охранного документа: 0002615329
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bc3b

Способ термостабилизации грунтов оснований свайных фундаментов опор трубопровода

Изобретение относится к теплотехнике в области строительства, а именно к термостабилизации грунтовых оснований свайных фундаментов опор трубопровода и трубопроводов подземной прокладки, расположенных на многолетнемерзлых грунтах. Способ термостабилизации грунтов оснований свайных фундаментов...
Тип: Изобретение
Номер охранного документа: 0002616029
Дата охранного документа: 12.04.2017
Показаны записи 1-10 из 58.
10.01.2013
№216.012.19a8

Способ выявления отслаиваний покрытия подземных трубопроводов

Изобретение относится к области оценки технического состояния подземных магистральных трубопроводов и может найти применение при выявлении участков трубопроводов с отслаиванием антикоррозионного покрытия. Задачей способа является снижение трудоемкости и повышение безопасности способа. Способ...
Тип: Изобретение
Номер охранного документа: 0002472060
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1db4

Способ определения местоположения источника блуждающего тока

Изобретение относится к области защиты подземных металлических сооружений от коррозии блуждающими токами и может быть использовано в нефтяной и газовой отраслях промышленности для определения наличия и местоположения источника блуждающих токов. Сущность: выбирают не менее двух участков вблизи...
Тип: Изобретение
Номер охранного документа: 0002473098
Дата охранного документа: 20.01.2013
10.10.2013
№216.012.7437

Способ определения температуры кристаллизации парафинов в нефти

Изобретение относится к области определения физических параметров пластовых флюидов и может быть использовано в промышленных и научно-исследовательских лабораториях для определения температуры кристаллизации парафинов в нефти. Согласно заявленному способу выполняют нагрев образца нефти с...
Тип: Изобретение
Номер охранного документа: 0002495408
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7461

Субгармонический параметрический рассеиватель

Использование: изобретение относится к субгармоническому параметрическому рассеивателю, который может быть использован в качестве пассивного нелинейного маркера - радиоответчика в поисковых системах, например, в системе обнаружения жертв кораблекрушения. Сущность: субгармонический...
Тип: Изобретение
Номер охранного документа: 0002495450
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.76ff

Маркер - субгармонический параметрический рассеиватель

Изобретение относится к пассивным маркерам-ответчикам, являющимся вторичными источниками электромагнитного излучения, которые могут быть использованы в качестве радиоответчика в поисковых системах. Достигаемый технический результат - повышение эффективности за счет лучшего согласования...
Тип: Изобретение
Номер охранного документа: 0002496123
Дата охранного документа: 20.10.2013
10.11.2013
№216.012.7f9c

Способ обнаружения объектов, содержащих нелинейные элементы

Использование: изобретение относится к поисковым устройствам, которые обнаруживают объект, на основе приема сигналов, появляющихся в результате вторичного переизлучения с изменением спектра зондирующего сигнала. Сущность: способ обнаружения заключает в том, что в направлении предполагаемого...
Тип: Изобретение
Номер охранного документа: 0002498341
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.832b

Способ выявления внутренних расслоений стенок труб

Использование: для выявления внутренних расслоений стенок труб. Сущность заключается в том, что осуществляют подготовку поверхности трубы к ультразвуковому контролю, сканирование ее ультразвуковым преобразователем, подключенным к прибору, и выявление мест расслоений по показаниям прибора, при...
Тип: Изобретение
Номер охранного документа: 0002499255
Дата охранного документа: 20.11.2013
10.04.2014
№216.012.b3f6

Маркер для внутритрубной диагностики

Изобретение относится к магнитной внутритрубной диагностике и может использоваться в нефтегазовой промышленности при определении координат дефектов металла труб подземных трубопроводов. Маркер состоит из двух маркерных накладок, выполненных из ферромагнитного материала, а именно из...
Тип: Изобретение
Номер охранного документа: 0002511787
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb70

Обнаружитель объектов, содержащих нелинейные элементы

Изобретение относится к поисковым устройствам и предназначено для обнаружения объектов на основе приема сигналов, появляющихся в результате вторичного переизлучения с изменением спектра зондирующего сигнала. Технический результат - обеспечение возможности обнаружения объектов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002513712
Дата охранного документа: 20.04.2014
27.04.2014
№216.012.bccd

Способ определения касательных напряжений в стальных трубопроводах

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения касательных напряжений в стальных трубопроводах надземной прокладки. Техническая задача решается тем, что в способе определения касательных напряжений в стальных трубопроводах,...
Тип: Изобретение
Номер охранного документа: 0002514072
Дата охранного документа: 27.04.2014
+ добавить свой РИД