×
13.02.2018
218.016.20a6

Дозиметр ультрафиолетового излучения

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптических измерений и касается дозиметра ультрафиолетового излучения. Дозиметр включает в себя последовательно расположенные по ходу распространения излучения средство оптической фильтрации, пропускающее ультрафиолетовое излучение, фотолюминесцентный преобразователь ультрафиолетового излучения в видимое и фотодетектор. Перед средством оптической фильтрации установлен фотолюминесцентный преобразователь из неорганического стекла с ионами трехвалентной сурьмы. Средство оптической фильтрации выполнено в виде оптического фильтра, прозрачного в спектральном интервале 320-400 нм, а фотолюминесцентный преобразователь ультрафиолетового излучения в видимое выполнен из неорганического стекла с нейтральными молекулярными кластерами серебра. Технический результат заключается в повышении чувствительности устройства и обеспечении возможности проведения измерений в спектральном диапазоне 230-290 нм. 1 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к радиационным измерениям, в частности к измерениям дозы ультрафиолетового (УФ) излучения, и может быть использовано для контроля технологических процессов, в которых применяется УФ-излучение, а также для контроля предельно допустимой дозы УФ- и солнечного облучения, приводящей к повреждению кожи человека (ультрафиолетовая эритема или "солнечный удар", пигментация, рак кожи и т.д.).

Излучение В-области УФ-спектра (230-290 нм) наиболее вредоносно для человека, и при большой дозе может привести к мутациям и возникновению рака кожи. Это обусловливается тем, что поглощение компонентов ДНК и белков находится именно в этой области спектра. Максимальная относительная эффективность генерации повреждений кожи достигается при длине волны 260-280 нм, поэтому разработка дозиметра УФ-излучения для этого спектрального интервала является актуальной.

Известен дозиметр УФ-излучения индивидуального пользования (Патент РФ №2107266, МПК G01 J1/50, дата приоритета, 01.07.1996, опубликовано 20.03.1998), включающий в себя три слоя. Два наружных слоя выполнены из фотохромного материала с обратимым фотохромизмом и являются чувствительным элементом дозиметра. Фотохромный материал претерпевает изменение оптической плотности в выбранном участке его спектра пропускания в зависимости от экспозиционной дозы УФ-излучения с длиной волны менее 320 нм. Внутренний слой измерительно-индикаторного устройства представляет собой набор абсорбционных светофильтров, выполняющих функцию считывания оптической информации с фотохромных слоев. Недостатком данного технического решения является определение дозы облучения на полуколичественном уровне путем визуального определения изменения оптического пропускания участков дозиметра. Недостатком также является то, что для восстановления исходного оптического состояния фотохромного материала, необходимого для проведения следующего цикла измерений, требуется выдержка чувствительного элемента дозиметра в темноте в течение продолжительного времени (до нескольких часов).

В качестве дозиметра УФ-излучения может быть использован волоконный датчик искры и электрической дуги (Патент РФ №2459222, МПК G02B 6/02, дата приоритета 23.12.2010, опубликовано 20.08.2012). В данном устройстве УФ-излучение падает на чувствительный элемент - волокно, покрытое слоем полимера с добавкой люминесцентного органического красителя. УФ-излучение в люминесцентном слое преобразуется в излучение видимой области спектра и по волокну передается на кремниевый фотоприемник, чувствительный в данной области спектра. Недостатком такого дозиметра является небольшой срок службы чувствительного элемента из-за деградации полимера и красителя под действием УФ-излучения.

Наиболее близким техническим решением является сенсор и дозиметр для ультрафиолетового излучения (Патент РФ №2168716, МПК G01N 21/64, дата приоритета 16.10.1997, опубликовано 10.06.2001). Дозиметр содержит средства фильтрации, пропускающие только падающее УФ-излучение, пластину из люминесцентного материала, содержащего ионы редкоземельных металлов (Tb3+ и Sm3+), преобразующую ультрафиолетовое излучение в видимое излучение, оптический фильтр, пропускающий только видимую люминесценцию, и фотоприемное устройство, чувствительное в видимой области спектра. Недостатком дозиметра является то, что ионы редкоземельных металлов (Tb3+ и Sm3+) не имеют полос поглощения в спектральном интервале 230-290 нм и, следовательно, не могут обеспечивать спектральное преобразование излучения из данной области спектра. Недостатком дозиметра является также то, что пластина из люминесцентного материала и оптический фильтр дозиметра конструктивно совмещены с фотоприемным устройством, что исключает использование дозиметра в условиях высокого уровня электромагнитных помех, а также приводит к снижению чувствительности и искажению результатов измерений из-за нагрева фотоприемного устройства излучением.

Изобретение решает задачу повышения чувствительности и возможности регистрации и измерения мощности УФ-излучения в спектральном интервале 230-290 нм.

Сущность заявляемого технического решения заключается в том, что дозиметр ультрафиолетового излучения содержит последовательно расположенные по ходу распространения излучения фотолюминесцентный преобразователь из неорганического стекла с ионами трехвалентной сурьмы, средство оптической фильтрации, пропускающее ультрафиолетовое излучение, при этом средство оптической фильтрации выполнено в виде оптического фильтра, прозрачного в спектральном интервале 320-400 нм, фотолюминесцентный преобразователь ультрафиолетового излучения в видимое, который выполнен из неорганического стекла с нейтральными молекулярными кластерами серебра и фотодетектор, причем фотолюминесцентные преобразователи могут быть выполнены в виде пластин или волокон.

Известно (L. Glebova, D. Ehrt, L. Glebov, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. В, V. 48 (2007) P. 328.), что ионы трехвалетной сурьмы (Sb3+) в стеклах имеют полосы люминесценции в спектральном интервале 320-420 нм при возбуждении люминесценции излучением спектрального интервала 230-290 нм. Известно (V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, A.I. Sidorov, Т.A. Shakhverdov, D.S. Agafonova Luminescence of silver molecular clusters in photo-thermo-refractive glasses // Optical Materials 36 (2014) 753-759), что нейтральные молекулярные кластеры серебра Agn (n=2-4) в стеклах обладают интенсивной люминесценцией в видимой области спектра при возбуждении люминесценции УФ-излучением спектрального интервала 330-400 нм. При облучении УФ-излучением спектрального интервала 320-390 нм стекла с ионами Sb3+ в нем возникает люминесценция в спектральном интервале 320-440 нм. Часть этого излучения люминесценции проходит через оптический фильтр, прозрачный в данной области спектра, и возбуждает люминесценцию в стекле с нейтральными молекулярными кластерами серебра в видимой области спектра. Часть излучения люминесценции нейтральных молекулярных кластеров серебра попадает на приемную площадку кремниевого фотодиода и регистрируется в виде электрического сигнала. Таким образом, в дозиметре происходит двойное спектральное преобразование УФ-излучения из спектрального интервала 230-290 нм в видимую область спектра, в которой кремниевый фотодиод имеет максимальную чувствительность.

Совокупность признаков, изложенных формуле, характеризует дозиметр УФ-излучения, изготовленный из стекла с ионами трехвалентной сурьмы, содержит оптический фильтр, прозрачный в спектральном интервале 320-400 нм, и стекло с нейтральными молекулярными кластерами серебра. Это позволяет осуществить двойное спектральное преобразование УФ-излучения из спектрального интервала 230-290 нм в видимую область спектра.

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 показана: блок-схема дозиметра УФ-излучения. 1 - пластина из силикатного стекла с ионами Sb3+; 2 - оптический фильтр из цветного оптического стекла УФС8; 3 - пластина из силикатного стекла с нейтральными молекулярными кластерами серебра; 4 - фотодиод.

На фиг. 2 показаны: 5 - спектр возбуждения люминесценции силикатного стекла с ионами Sb3+; 6 - спектр люминесценции силикатного стекла с ионами Sb3+. Длина волны возбуждения люминесценции 240 нм; 7 - спектр люминесценции силикатного стекла с ионами Sb3+. Длина волны возбуждения люминесценции 280 нм; 8 - спектр возбуждения люминесценции силикатного стекла с нейтральными молекулярными кластерами серебра для длины волны люминесценции 540 нм; 9 - спектр люминесценции стекла с нейтральными молекулярными кластерами серебра для длины волны возбуждения люминесценции 360 нм.

На фиг. 3 показана: интегральная для спектрального интервала 230-290 нм градуировочная кривая дозиметра УФ-излучения для кремниевого фотодиода BPW21R, включенного в фотогальваническом режиме.

На фиг. 4 показана: блок-схема дозиметра УФ-излучения. 10 - оптическое волокно из силикатного стекла с ионами Sb3+; 2 - оптический фильтр из цветного оптического стекла УФС8; 11 - оптическое волокно из силикатного стекла с нейтральными молекулярными кластерами серебра; 4 - фотодиод; 12 - цилиндрическая линза из кварцевого стекла; 13 - непрозрачный экран; 14 - передающее оптическое волокно;

Сущность изобретения раскрывается на примерах, которые не должны рассматриваться экспертом как ограничивающие притязания изобретения.

Сведения, подтверждающие возможность осуществления изобретения

Пример 1.

На фиг. 1 показана блок-схема дозиметра УФ-излучения. Дозиметр состоит из пластины силикатного стекла 1 с ионами трехвалентной сурьмы, оптического фильтра в виде пластины из цветного оптического стекла УФС8 2, пластины из силикатного стекла с нейтральными молекулярными кластерами серебра 3 и кремниевого фотодиода BPW21R 4.

Дозиметр работает следующим образом. УФ-излучение спектрального интервала 230-290 нм проникает в пластину 1 и возбуждает люминесценцию ионов трехвалентной сурьмы. Спектр возбуждения люминесценции ионов трехвалентной сурьмы показан на фиг. 2 (кривая 5). Из фиг. 2 видно, что спектр возбуждения занимает спектральный интервал 230-290 нм и состоит из двух полос с максимумами на длинах волн 240 и 280 нм. Спектр люминесценции ионов трехвалентной сурьмы показан на фиг. 2 (кривые 6 и 7). Из фиг. 2 видно, что спектр люминесценции занимает спектральный интервал 320-440 нм и состоит из двух полос с максимумами на длинах волн 360 и 370 нм. Часть излучения люминесценции проходит через оптический фильтр 2 и возбуждает люминесценцию нейтральных молекулярных кластеров серебра в стеклянной пластине 3. Оптический фильтр служит для предотвращения прохождения УФ-излучения спектрального интервала 230-290 нм и видимого излучения в пластину 3. Спектр возбуждения люминесценции нейтральных молекулярных кластеров серебра показан на фиг. 2 (кривая 8). Из фиг. 2 видно, что спектр возбуждения люминесценции нейтральных молекулярных кластеров серебра занимает спектральный интервал 300-480 нм, имеет максимум на длине волны 360 нм и совпадает со спектром люминесценции ионов трехвалентной сурьмы. Спектр люминесценции нейтральных молекулярных кластеров серебра показан на фиг. 2 (кривая 9). Из фиг. 2 видно, что спектр люминесценции нейтральных молекулярных кластеров серебра занимает спектральный интервал 400-580 нм, имеет максимум на длине волны 520 нм и попадает в область спектральной чувствительности кремниевого фотодиода 4. Электрический сигнал с фотодиода поступает на блок обработки электрического сигнала, который выполняет следующие функции: преобразование аналогового сигнала фотодиода в цифровой сигнал; сравнение цифрового сигнала с градуировочной зависимостью; отсчет времени облучения; вычисление дозы облучения; вывод информации в виде, удобном потребителю, например, в виде цифровой индикации на дисплее, либо в виде звукового или светового сигнала, указывающего на достижение требуемой дозы или предельно допустимой дозы облучения. Доза облучения Q (Дж/м2) определяется по следующей формуле:

Q=V⋅t⋅K,

где V - сигнал фотодиода (мВ), t - время облучения (с), K - коэффициент пропорциональности, который определяется по градуировочной кривой (Вт/мВ⋅м2). На фиг. 3 показана интегральная для спектрального интервала 230-290 нм градуировочная кривая дозиметра УФ-излучения для кремниевого фотодиода BPW21R, включенного в фотогальваническом режиме. Источником УФ-излучения служила дейтериевая лампа, имеющая полосы излучения в спектральном интервале 230-290 нм. Из фиг. 3 видно, что градуировочная зависимость линейна в интервале освещенности от 0.2 до 1.3 Вт/м2. Это позволяет для данного интервала освещенности определить коэффициент пропорциональности K=0.125 Вт/мВ⋅м2. Таким образом, двойное спектральное преобразование УФ-излучения из спектрального интервала 230-290 нм в видимую область спектра позволяет конвертировать УФ-излучение в спектральную область чувствительности кремниевого фотодиода.

Пример 2.

На фиг. 4 показана блок-схема дозиметра УФ-излучения на основе оптических волокон. Дозиметр состоит из многомодового оптического волокна из силикатного стекла 10 с ионами трехвалентной сурьмы, оптического фильтра в виде пластины из цветного оптического стекла УФС8 2, многомодового оптического волокна из силикатного стекла с нейтральными молекулярными кластерами серебра 11, кремниевого фотодиода BPW21R 4, цилиндрической линзы из кварцевого стекла 12, непрозрачного экрана 13 и передающего оптического волокна 14.

Дозиметр работает следующим образом. УФ-излучение спектрального диапазона 230-290 нм фокусируется цилиндрической линзой 12 в волокно 10 с ионами трехвалентной сурьмы и возбуждает в нем люминесценцию. Часть излучения люминесценции преобразуется в волноводные моды и через оптический фильтр 2 поступает в волокно с нейтральными молекулярными кластерами серебра 11 и возбуждает в нем люминесценцию. Спектры возбуждения и люминесценции обоих волокон показаны на фиг. 2. Экран 13 служит для предотвращения попадания постороннего излучения в волокно 11. Часть излучения люминесценции в волокне 11 преобразуется в волноводные моды и по передающему волокну 14 поступает на кремниевый фотодиод 4. Обработка сигнала фотодиода производится аналогично описанной в примере 1.

Использование в дозиметре стекол с люминесцентными центрами в ионов трехвалентной сурьмы и нейтральных молекулярных кластеров серебра позволяет осуществить двойное спектральное преобразование УФ-излучения из спектрального интервала 230-290 нм в видимую область спектра, соответствующую спектральной чувствительности кремниевого фотодиода.


Дозиметр ультрафиолетового излучения
Дозиметр ультрафиолетового излучения
Дозиметр ультрафиолетового излучения
Источник поступления информации: Роспатент

Показаны записи 91-100 из 121.
20.06.2018
№218.016.6529

Оптическая наностеклокерамика с ионами хрома

Использование: для использования при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов. Сущность изобретения заключается в том, что оптическая наностеклокерамика с ионами хрома относится к литий-калий-алюмоборатной системе с ионами трехвалентного...
Тип: Изобретение
Номер охранного документа: 0002658109
Дата охранного документа: 19.06.2018
05.07.2018
№218.016.6b4f

Иммерсионная композиция

Иммерсионная композиция относится к оптическому материаловедению и может быть использована в качестве иммерсионной жидкости в оптическом приборостроении для контроля параметров материалов и оптических деталей, в том числе крупногабаритных изделий сложной формы, а также в геологии и минералогии...
Тип: Изобретение
Номер охранного документа: 0002660054
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6e70

Зонд для сканирующей зондовой микроскопии и способ его изготовления (варианты)

Изобретение относится к измерительной технике и может быть использовано в сканирующей зондовой микроскопии. Зонд для сканирующей зондовой микроскопии содержит кантилевер для атомно-силовой микроскопии с оптически активной областью, находящейся на острие иглы кантилевера. Активная область...
Тип: Изобретение
Номер охранного документа: 0002660418
Дата охранного документа: 06.07.2018
24.07.2018
№218.016.73c5

Стекло

Изобретение относится к составам люминесцирующих свинцовоборосиликатных стекол. Стекло содержит следующие компоненты, вес.%: BO 6,0-27,0; SiO 3,0-10,0; AlO 1,0-3,0; PbO 60,0-90,0 и по крайней мере один окисел из группы PrO, SmO, NdO, TbO, HoO, ErO, TmO, EuO, CeO при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002661959
Дата охранного документа: 23.07.2018
09.08.2018
№218.016.79a3

Кожухотрубный струйно-инжекционный аппарат и способ его использования для производства пива

Группа изобретений относится к пищевой промышленности, преимущественно к производству пива и спирта. В кожухотрубном струйно-инжекционном аппарате, имеющем теплообменник-аэратор, емкость-накопитель, патрубок для подвода культуральной жидкости, установлен размещенный в емкости-накопителе...
Тип: Изобретение
Номер охранного документа: 0002663116
Дата охранного документа: 01.08.2018
19.10.2018
№218.016.9443

Способ получения этилового спирта

Изобретение относится к спиртовой промышленности. Способ получения спирта включает: разрушение зерна ржи на установке ударно-активаторного действия - дезинтеграторе до среднего размера частиц 160 мкм, смешивание с водой в соотношении 1:3,0, выдерживание при температуре 60°С в течение 2,5 ч при...
Тип: Изобретение
Номер охранного документа: 0002670156
Дата охранного документа: 18.10.2018
19.10.2018
№218.016.944d

Способ производства дистиллята из зернового сырья

Изобретение относится к спиртовой промышленности. В качестве зернового сырья используется светлый ячменный солод. Способ производства дистиллята включает: смешивание измельченного ячменного солода с водой в массовом соотношении 1:3,5, определение в полученном заторе водородного показателя и...
Тип: Изобретение
Номер охранного документа: 0002670121
Дата охранного документа: 18.10.2018
01.11.2018
№218.016.98d5

Прозрачный проводящий оксид

Изобретение относится к составам покрытий полупроводниковых материалов и решает задачу усиления электролюминесценции полупроводников на длине волны 450 нм. Прозрачный проводящий оксид содержит слой оксида цинка с максимальной толщиной 200 нм, легированный ионами алюминия в концентрации от 1 до...
Тип: Изобретение
Номер охранного документа: 0002671236
Дата охранного документа: 30.10.2018
06.12.2018
№218.016.a440

Способ получения урокиназы, энтрапированной в коллоидный магнитный керамический нанокомпозитный материал

Изобретение относится к способу получения урокиназы, энтрапированной в коллоидный магнитный керамический нанокомпозитный материал, и может быть использовано в медицине для топической терапии тромботических состояний конечностей. Способ включает получение стабильного гидрозоля наночастиц...
Тип: Изобретение
Номер охранного документа: 0002674032
Дата охранного документа: 04.12.2018
12.12.2018
№218.016.a57d

Способ записи оптической информации в стекле

Изобретение относится к оптике и фотонике и может быть использовано для записи в стекле оптической информации в цифровом или аналоговом форматах, а также для создания в стекле нано- и микроразмерных источников света. Способ записи оптической информации в стекле, содержащем ионы и заряженные...
Тип: Изобретение
Номер охранного документа: 0002674402
Дата охранного документа: 07.12.2018
Показаны записи 91-100 из 100.
27.04.2019
№219.017.3df2

Способ изготовления длиннопериодной волоконной решетки

Способ может быть использован для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах. Способ обеспечивает формирование на поверхности стеклянного волокна периодической структуры переменной толщины. Волокно погружают вертикально в раствор...
Тип: Изобретение
Номер охранного документа: 0002398251
Дата охранного документа: 27.08.2010
27.04.2019
№219.017.3df3

Способ изготовления спиральной длиннопериодной волоконной решетки (варианты)

Способ включает скручивание вокруг оси заготовки со скоростью 0,5…1 об/с и одновременно растягивание продольно со скоростью 0,1…1 мм/с. В первом варианте заготовка представляет собой раствор полимера с концентрацией 50…80% и полученное волокно смачивают растворителем полимера в течение 2…15 с и...
Тип: Изобретение
Номер охранного документа: 0002392646
Дата охранного документа: 20.06.2010
27.04.2019
№219.017.3df9

Способ формирования металлических нанокластеров в стекле

Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с...
Тип: Изобретение
Номер охранного документа: 0002394001
Дата охранного документа: 10.07.2010
29.05.2019
№219.017.66b2

Способ изготовления гофрированных оптических волокон

Изобретение относится к волноводной и волоконной оптике и может быть использовано для изготовления длиннопериодных волоконных решеток. Способ изготовления гофрированных оптических волокон заключается в том, что волокно погружают вертикально в 5-30% раствор органического полимера в органическом...
Тип: Изобретение
Номер охранного документа: 0002379719
Дата охранного документа: 20.01.2010
15.06.2019
№219.017.833e

Катализатор жидкофазного синтеза метанола и способ его получения

Изобретение относится к области производства гетерогенных катализаторов для процессов жидкофазного синтеза метанола. Катализатор жидкофазного синтеза метанола содержит носитель и цинк в качестве активного компонента. Согласно изобретению, в качестве носителя используют сверхсшитый полистирол со...
Тип: Изобретение
Номер охранного документа: 0002691451
Дата охранного документа: 14.06.2019
10.07.2019
№219.017.aa94

Нелинейно-оптический ограничитель лазерного излучения

Изобретение относится к оптике и может быть использовано в лазерной технике и оптических приборах для защиты глаз от повреждения лазерным излучением. Ограничитель состоит из телескопа, нелинейно-оптического элемента, расположенного между линзами телескопа и диафрагмы. Нелинейно-оптический...
Тип: Изобретение
Номер охранного документа: 0002282880
Дата охранного документа: 27.08.2006
24.10.2019
№219.017.dabe

Устройство определения участка трёхпроводной воздушной линии электропередачи с обрывом фазного провода

Изобретение относится к электротехнике и может быть использовано для защиты от обрыва фазного провода воздушной линии электрической сети с изолированной, компенсированной или резистивно заземленной нейтралями напряжением 6-10-20 кВ. Технический эффект, заключающийся в повышении надежности...
Тип: Изобретение
Номер охранного документа: 0002703945
Дата охранного документа: 23.10.2019
02.03.2020
№220.018.07df

Фотоактивная суспензия

Изобретение относится к материалам, используемым для решения экологических проблем, в медицине и санитарии, и может быть использовано для удаления органических примесей. Фотоактивная суспензия, включающая частицы оксида цинка, воду и аммиачную воду, дополнительно содержит нитрат цинка при...
Тип: Изобретение
Номер охранного документа: 0002715417
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0811

Датчик искрения

Изобретение относится к волоконной оптике и может быть использовано в волоконно-оптических датчиках искрения и электрической дуги и предназначено для использования на электростанциях, в высоковольтных установках, на линиях электропередачи, на пожаро- и взрывоопасных предприятиях химической и...
Тип: Изобретение
Номер охранного документа: 0002715477
Дата охранного документа: 28.02.2020
23.05.2023
№223.018.6f2a

Фотоактивная кювета

Изобретение относится к технологии очистки и обеззараживания воздуха и водных сред и оптическим элементам медицинской техники. Предложена фотоактивная кювета, представляющая собой проточное устройство, выполненное в виде емкости трубчатой структуры из кварцевого стекла, образованной сквозными...
Тип: Изобретение
Номер охранного документа: 0002747332
Дата охранного документа: 04.05.2021
+ добавить свой РИД