×
27.04.2019
219.017.3df9

СПОСОБ ФОРМИРОВАНИЯ МЕТАЛЛИЧЕСКИХ НАНОКЛАСТЕРОВ В СТЕКЛЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с нанокластерами серебра или меди в тонких приповерхностных слоях стекол. Технический результат изобретения - обеспечение повышения точности и технологичности изготовления композитных слоев заданной геометрии, варьирования глубины залегания композитного слоя, толщины и концентрации металлических нанокластеров в нем, пространственное разрешение не хуже 10 нм. Поверхность стекла, содержащего ионы серебра или меди, облучают электронами с энергией 2-50 кэВ и дозой 2-20 мК/см, затем стекло отжигают при температуре 400-600°С в течение 2-10 часов. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к технологии оптических материалов и может быть использовано в интегральной оптике. Композитные материалы с наночастицами металлов (Ag, Au, Cu, Pt, Pd) находят применение в качестве нелинейно-оптических сред для быстродействующих оптических переключателей [Р.Chakraborty Metal nanoclasters in glasses as non-linear photonic materials // J.Mater. Sci., 1998, Vol.33, P.2235-2249], фотохромных сред [А.V.Dotsenko, L.B.Glebov, V.A.Tsekhomsky Physics and Chemistry of Photochromic Glasses. CRC Press LLC, 1998, 190 p.], метаматериалов [N.A.Litchinitser, I.R.Gabitov, A.I.Maimistov, V.M.Shalaev Negative refractive index metamaterials in optics. Progress in Optics (ed. by E. Wolf), 2008, Vol.51, P.3-60] и для изготовления интегрально-оптических устройств на поверхностных электромагнитных волнах (плазмонах) [А.V.Zayats, I.I.Smolyaninov, A.A.Maradudin Nano-optics of surface plasmon polaritons // Physics Reports. 2005, V.408, P.131-314].

Известен способ формирования нанокластеров серебра и меди в стеклах, заключающийся в том, что стекло облучают ионами серебра или меди, после чего подвергают отжигу [A.L.Stepanov, R.A.Ganeev, A.I.Ryasnyanski et al Non-linear optical properties of metal nanoparticles implanted in silicate glass // Nucl. Instr. and Meth. in Phys. Res. B, 2003, Vol.206, P.624-628]. В процессе облучения ионы внедряются в тонкий приповерхностный слой стекла. При отжиге ионы переходят в атомарное состояние и в результате диффузии формируют металлические нанокластеры. Недостатком способа является необходимость использования дорогостоящих ускорителей ионов с высокими ускоряющими напряжениями для внедрения тяжелых ионов металла в приповерхностный слой стекла.

Известен способ формирования нанокластеров серебра в стеклах, заключающийся в том, что стекла помещают в расплав соли серебра, проводят процесс ионного обмена, после чего подвергают отжигу [НВ. Никоноров, Г.Т. Петровский Стекла для ионного обмена в интегральной оптике: современное состояние и тенденции дальнейшего развития (обзор). // Физ. и хим. стекла, 1999, т.25, №1, с.21-69.]. При ионном обмене ионы серебра внедряются в приповерхностный слой стекла. При отжиге ионы переходят в атомарное состояние и в результате диффузии формируют металлические нанокластеры. Недостатком способа является необходимость использования дополнительных фотолитографических процессов для создания в приповерхностном слое стекла микро- и макроструктур заданной геометрии, содержащих нанокластеры серебра.

Известен способ формирования нанокластеров серебра и меди в стеклах, выбранный в качестве прототипа, заключающийся в том, что стекла, содержащие ионы серебра или меди, либо нанокластеры галогенидов серебра или меди облучают ультрафиолетовым излучением, после чего подвергают отжигу [А.V.Dotsenko, L.B.Glebov, V.A.Tsekhomsky Physics and Chemistry of Photochromic Glasses. CRC Press LLC, 1998, 190 p.]. Ультрафиолетовое облучение приводит к переходу ионов серебра или меди в атомарное состояние. В результате диффузии они формируют металлические нанокластеры. Недостатком способа является большая глубина проникновения ультрафиолетового излучения в стекло, что препятствует созданию тонких (менее 1 мкм) композитных слоев. Недостатком является также то, что относительно большая длина волны излучения (λ=100…350 нм) препятствует созданию композитных слоев заданной геометрии с пространственным разрешением менее 100 нм.

Изобретение решает задачу повышения точности и технологичности изготовления слоев заданной геометрии, содержащих нанокластеры серебра или меди на поверхности и вблизи поверхности стекла.

Сущность заявляемого способа заключается в следующем. Поверхность стекла, содержащего ионы серебра или меди, облучают электронами с энергией 2…50 кэВ и дозой 2…20 мК/см2, а отжиг осуществляют при температуре 400…600°С в течение 2…10 часов.

Облучение электронами приводит к переходу ионов серебра или меди в атомарное состояние. При отжиге в результате диффузии они формируют металлические нанокластеры на поверхности стекла или в тонком приповерхностном слое стекла. Для создания композитных слоев заданной геометрии используют перемещение сфокусированного электронного луча по заданной траектории. Благодаря малой длине волны де Бройля электронов может быть обеспечено пространственное разрешение не хуже 10 нм.

Примеры конкретной реализации изобретения.

Сущность изобретения поясняется фиг.1 и фиг.2. На фиг.1, а показана фотография облученной зоны образца после термообработки. На фиг.1, б показан спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2). На фиг.2 показан спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2).

Пример 1. Облучению электронами подвергают пластину из силикатного стекла следующего состава: 15Na2O-5ZnO-4Al2O3-70SiO2-5NaF-1KBr-0.01Ag2O-0.01CeO2 (мол.%). Образец исходно представляет собой бесцветное и прозрачное стекло. Облучение проводят при комнатной температуре на сканирующем электроннолучевом микроскопе при энергии электронов 20 кэВ и токе 2 нА. Доза облучения составляет 11.4 мК/см2. Размер облучаемой зоны равен 270×350 мкм. При необходимости для обеспечения стока заряда облучаемую зону окружают кольцевым электродом, расположенным на расстоянии 200…300 мкм. После облучения проводят термическую обработку образца при Т=540°С в течение 2 часов. Под действием электронного луча в приповерхностном слое образца формируются нейтральные атомы Ag°. Расчет показывает, что торможение электронов при начальной энергии 20 кэВ происходит на расстоянии от поверхности 2.6 мкм. При последующей термообработке в результате диффузии атомов Ag° возникают нанокластеры серебра - Ag°n. Это приводит к появлению в облученной зоне полосы поглощения, связанной с плазменным резонансом нанокластеров серебра. На фиг.1 показана фотография облученной зоны образца после термообработки и спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2). Глубина залегания композитного слоя с нанокластерами серебра зависит от энергии воздействующих электронов. В данном примере она равна 2.5…2.6 мкм. Толщина композитного слоя по результатам оптических измерений равна 0.8 мкм.

Пример 2. Облучению электронами подвергают пластину из фотохромного силикатного стекла марки ФХС-7, содержащего нанокристаллы CuCl. Образец исходно представляет собой прозрачное стекло со слабой светло-зеленой окраской. Облучение проводят при комнатной температуре на электронно-лучевом микроскопе при энергии электронов 10 кэВ и токе 1 мкА. Доза облучения составляет 20 мК/см2. Диаметр облучаемой зоны равен 2 мм. При необходимости для обеспечения стока заряда облучаемую зону окружают кольцевым электродом. После облучения проводят термическую обработку образца при Т=540°С в течение 2 часов. Под действием электронного луча в приповерхностном слое образца происходит разложение хлорида меди и формируются нейтральные атомы Cu° и нанокластеры Cu°n. Это приводит к появлению в облученной зоне полосы поглощения, связанной с плазменным резонансом нанокластеров меди. При последующей термообработке в результате диффузии атомов меди концентрация и размеры нанокластеров меди увеличиваются. На фиг.2 показан спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2).

Из приведенных примеров следует, что предлагаемое техническое решение позволяет изготавливать композитные слои с нанокластерами серебра или меди в тонких приповерхностных слоях стекол. Использование электронного луча дает возможность повысить точность и технологичность изготовления композитных слоев заданной геометрии, а также варьировать глубину залегания композитного слоя, его толщину и концентрацию металлических нанокластеров в нем.

Предлагаемое техническое решение может найти применение в интегральной оптике для создания матриц микролинз, плазменных волноводов и оптических переключателей, а также для создания химических и биосенсоров на основе плазменных наноструктур и метаматериалов.

Способ формирования металлических нанокластеров в стекле, содержащем ионы серебра или меди, заключающийся в переводе ионов металла в атомарное состояние путем облучения стекла и последующего его отжига, отличающийся тем, что поверхность стекла облучают электронами с энергией 2-50 кэВ и дозой 2-20 мК/см, а отжиг осуществляют при температуре 400-600°С в течение 2-10 ч.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
11.03.2019
№219.016.db42

Подложка для биочипа и способ ее изготовления

Изобретения относятся к оптике, технологиям обработки оптических материалов и нанотехнологиям. Подложка для биочипа представляет собой стеклянную пластину с наночастицами металла (Au, Ag, Pt). Согласно изобретению пластина выполнена из силикатного фотохромного или фототерморефрактивного стекла...
Тип: Изобретение
Номер охранного документа: 0002411180
Дата охранного документа: 10.02.2011
11.03.2019
№219.016.db72

Способ изготовления спиральной длиннопериодной волоконной решетки

Способ изготовления спиральной длиннопериодной волоконной решетки из заготовки оптического волокна заключается в том, что на заготовку оптического волокна из стекла или полимера наматывают виток к витку полимерное волокно и фиксируют концы наматываемого волокна. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002426158
Дата охранного документа: 10.08.2011
11.03.2019
№219.016.db82

Способ получения поверхностных наноструктур

Изобретение относится к области изготовления поверхностных наноструктур. Согласно способу напыляют материал наноструктуры на подложку в вакууме при одновременном облучении подложки пространственно модулированным оптическим излучением. Области нулевой интенсивности излучения совпадают с местами...
Тип: Изобретение
Номер охранного документа: 0002429190
Дата охранного документа: 20.09.2011
11.03.2019
№219.016.db95

Интегрально-оптический элемент и способ его изготовления

Изобретение относится к области интегральной оптики. Устройство представляет собой подложку в виде полированной пластины, выполненной из натрийборосиликатного стекла. Ликвировавшее отожженное при температуре 530°С в течение 72 часов стекло имеет состав NaO:BO:SiO=7:23:70. В подложке сформирован...
Тип: Изобретение
Номер охранного документа: 0002425402
Дата охранного документа: 27.07.2011
11.03.2019
№219.016.dbb9

Оптико-электронная система для контроля пространственного положения железнодорожного пути

Оптико-электронная система для контроля пространственного положения железнодорожного пути относится к контрольно-измерительной технике. Система содержит источник излучения (2) и расположенные на измерительной тележке (9), устанавливаемой на железнодорожном пути (10), блок обработки сигналов (3)...
Тип: Изобретение
Номер охранного документа: 0002424932
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.f4be

Диссоциативный люминесцентный наносенсор

Изобретение относится к области приборостроения. Наносенсор включает в себя полупроводниковые нанокристаллы (квантовые точки, КТ), связанные посредством координационной связи с молекулами органического красителя в комплекс, в котором собственная люминесценция КТ отсутствует. В наносенсор входят...
Тип: Изобретение
Номер охранного документа: 0002414696
Дата охранного документа: 20.03.2011
27.04.2019
№219.017.3df2

Способ изготовления длиннопериодной волоконной решетки

Способ может быть использован для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах. Способ обеспечивает формирование на поверхности стеклянного волокна периодической структуры переменной толщины. Волокно погружают вертикально в раствор...
Тип: Изобретение
Номер охранного документа: 0002398251
Дата охранного документа: 27.08.2010
27.04.2019
№219.017.3df3

Способ изготовления спиральной длиннопериодной волоконной решетки (варианты)

Способ включает скручивание вокруг оси заготовки со скоростью 0,5…1 об/с и одновременно растягивание продольно со скоростью 0,1…1 мм/с. В первом варианте заготовка представляет собой раствор полимера с концентрацией 50…80% и полученное волокно смачивают растворителем полимера в течение 2…15 с и...
Тип: Изобретение
Номер охранного документа: 0002392646
Дата охранного документа: 20.06.2010
09.05.2019
№219.017.4eab

Способ измерения поляризационной чувствительности приемника оптического излучения (варианты)

Изобретение относится к оптике и может быть использовано для определения систематических погрешностей измерений в поляриметрической и эллипсометрической аппаратуре. Способ включает воздействие излучением, прошедшим через поляризатор и анализатор, на испытуемый приемник, при этом анализатор...
Тип: Изобретение
Номер охранного документа: 0002426078
Дата охранного документа: 10.08.2011
09.05.2019
№219.017.4faa

Волоконно-оптический датчик тока

Изобретение относится к области волоконно-оптических измерительных устройств и может быть использовано в интерференционных волоконно-оптических датчиках тока. Волоконно-оптический датчик тока содержит оптически соединенные источник светового излучения, разветвитель, ко второму входу которого...
Тип: Изобретение
Номер охранного документа: 0002433414
Дата охранного документа: 10.11.2011
Показаны записи 1-10 из 43.
10.11.2013
№216.012.7d7f

Способ каталитической конверсии целлюлозы в гекситолы

Изобретение относится к области переработки возобновляемого сырья (в частности, целлюлозы) в сырье для химического синтеза и биотопливо. В способе каталитической конверсии целлюлозы в гекситолы, включающем проведения процесса гидролитического гидрирования целлюлозы в течение 3-7 минут при...
Тип: Изобретение
Номер охранного документа: 0002497800
Дата охранного документа: 10.11.2013
10.03.2014
№216.012.a953

Способ формирования серебряных наночастиц в стекле

Способ формирования серебряных наночастиц в стекле относится к технологии оптических материалов и может быть использован в интегральной оптике и биосенсорных технологиях. Способ включает нанесение серебряной пленки на поверхность силикатного стекла, допированного церием, выдерживание полученной...
Тип: Изобретение
Номер охранного документа: 0002509062
Дата охранного документа: 10.03.2014
27.03.2014
№216.012.ae13

Способ получения сапонинсодержащих экстрактов (вариант)

Изобретение относится к фармацевтической промышленности, а именно к способу получения сапонинсодержащего экстракта. Способ получения сапонинсодержащего экстракта, включающий предварительное замачивание корней Saponaria officialis L. в дистиллированной воде, экстракцию под воздействием...
Тип: Изобретение
Номер охранного документа: 0002510278
Дата охранного документа: 27.03.2014
10.03.2015
№216.013.2faa

Способ записи оптической информации в стекле

Изобретение относится к области оптики и может быть использовано для записи и хранения оптической информации в виде текста, изображений, штрих-кодов и цифровой битовой информации. Целью изобретения является увеличение скорости записи оптической информации в стекле и упрощение состава стекла....
Тип: Изобретение
Номер охранного документа: 0002543670
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.38fa

Преобразователь напряжения в частоту импульсов

Изобретение относится к области автоматики и может использоваться при автоматизации технологических процессов. Достигаемый технический результат - повышение надежности преобразования напряжения в частоту импульсов путем диагностирования полярности подключения его выходных клемм к...
Тип: Изобретение
Номер охранного документа: 0002546074
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3904

Многозонный интегрирующий регулятор

Изобретение относится к области преобразовательной техники и может использоваться при автоматизации технологических процессов, например, в регуляторах температуры. Техническим результатом является стабилизация частоты несущих колебаний при отказах релейных элементов и тем самым сохранение...
Тип: Изобретение
Номер охранного документа: 0002546084
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42b6

Волноводный концентратор солнечного элемента

Волноводный концентратор солнечного элемента относится к волноводной и волоконной оптике и может быть использован в солнечных элементах и солнечных батареях с монокристаллическими полупроводниковыми фотоэлектрическими преобразователями. Концентратор солнечного элемента состоит из трех...
Тип: Изобретение
Номер охранного документа: 0002548576
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4707

Способ биоконверсии отходов промышленного производства сапонинов из корня saponaria officinalis

Изобретение относится к области получения удобрений на основе отходов переработки растительного сырья. Предложен способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis. Способ включает приготовление исходной смеси, загрузку смеси в биореактор и...
Тип: Изобретение
Номер охранного документа: 0002549687
Дата охранного документа: 27.04.2015
10.07.2015
№216.013.5ebb

Голографический коллиматорный прицел

Изобретение относится к коллиматорным оптическим прицелам для легкого стрелкового оружия и предназначено для формирования прицельного знака в бесконечности с помощью голограммного оптического элемента. Голографический коллиматорный содержит последовательно установленные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002555792
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60a2

Чувствительный элемент волоконно-оптического датчика температуры

Изобретение относится к волоконно-оптическим датчикам температуры. Чувствительный элемент выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и ионы редкоземельного металла. Технический результат - увеличение температурной...
Тип: Изобретение
Номер охранного документа: 0002556279
Дата охранного документа: 10.07.2015
+ добавить свой РИД