×
20.06.2018
218.016.6529

Результат интеллектуальной деятельности: Оптическая наностеклокерамика с ионами хрома

Вид РИД

Изобретение

Аннотация: Использование: для использования при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов. Сущность изобретения заключается в том, что оптическая наностеклокерамика с ионами хрома относится к литий-калий-алюмоборатной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): LiO 0-15,0; AlO 20,0-30,0; KO 10,0-20,0; BO 40,0-60,0; SbO 0-6,0; CrO 0,05-0,2. Технический результат: упрощение технологии изготовления, а также увеличение прозрачности в видимой области спектра. 5 ил.

Изобретение относится к оптическому материаловедению и может быть использовано при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов.

Синтетический монокристалл рубина (Al2O3:Cr3+), генерирующими центрами которого являются ионы Cr3+, является активным элементом наиболее распространенных и мощных импульсных лазеров (Справочник по лазерам / под ред. А.М. Прохорова. В 2-х томах. T.I. - М.: Сов. радио, 1978. - 504 с.). Недостатками этого оптического материала являются дороговизна и высокие требования к чистоте исходных реактивов, высокие температуры синтеза кристаллов - более 2000 градусов, трудоемкий и длительный процесс выращивания кристаллов, а также сложность их дальнейшей обработки из-за высокой твердости.

Известны оптические наностеклокерамики с ионами хрома систем CaO-GeO2-B2O3, CaO-GeO2-Na2B4O7 и CaO-GeO2-LiBO2, содержащие нанокристаллы форстерита с ионами Cr4+ (V.A. Ivanov, D.V. Simanovskiy, М.О. Marychev, P.V. Andreev, I. Koseva, P. Tzvetkov, V. Nikolov. Ca2GeO4:Cr4+ transparent nano-glass ceramics // J. of Non-Crystalline Solids, V. 456 (2017), P. 76-82). Недостатками данных материалов являются высокие температуры синтеза (до 1700°С) и высокие температуры стеклования (950-1500°С), при которых происходит формирование и рост нанокристаллической фазы. Это усложняет изготовление наностеклокерамики и увеличивает ее себестоимость.

Известна оптическая наностеклокерамика с ионами хрома системы SiO2-Al2O3-MgO-K2O, содержащая нанокристаллы форстерита с ионами Cr3+ и Cr4+, выбранная в качестве прототипа (М. Yu. Sharonov, А.В. Bykov, S. Owen, V. Petricevic, and R.R. Alfano. Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium // J. Opt. Soc. Am. В, V. 21, No. 11 (2004), P. 2046-2052). Недостатком данного материала является высокая температура синтеза (1600°С) и высокая температура стеклования (750-900°С), при которой происходит формирование и рост нанокристаллической фазы. Это усложняет изготовление наностеклокерамики и увеличивает ее себестоимость. Недостатком является также то, что часть ионов хрома находится в четырехвалентном состоянии, что уменьшает интенсивность люминесценции в видимой области спектра. Недостатком является также то, что край фундаментальной полосы поглощения наностеклокерамики лежит в спектральном интервале 500-600 нм, что уменьшает ее прозрачность в видимой области спектра.

Изобретение решает задачи упрощения технологии изготовления оптической наностеклокерамики с ионами хрома, уменьшения ее себестоимости, а также увеличения прозрачности в видимой области спектра.

Сущность заявляемого технического решения заключается в том, что оптическая наностеклокерамика с ионами хрома относится к литий-калий-алюмоборатной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): Li2O 0-15,0; Al2O3 20,0-30,0; K2O 10,0-20,0; B2O3 40,0-60,0; Sb2O3 0-6,0; Cr2O3 0,05-0,2.

Наши эксперименты показали, что в оптической наностеклокерамике системы Li2O-Al2O3-K2O-B2O3-Sb2O3-Cr2O3 ионы хрома находятся в трехвалентном состоянии и входят в состав нанокристаллов Al2O3, как у синтетического монокристалла рубина. Данная оптическая наностеклокерамика синтезируется при температуре 1400-1465°С, а формирование и рост нанокристаллов Al2O3:Cr3+ происходит в процессе термообработки при температуре 580-630°С в течение 20-300 мин.

Достоинствами предлагаемой оптической наностеклокерамики являются меньшие температуры синтеза наностеклокерамики и формирования нанокристаллов Al2O3:Cr3+, по сравнению с прототипом, что упрощает изготовление наностеклокерамики и уменьшает ее себестоимость. Достоинством является также то, что край фундаментальной полосы поглощения наностеклокерамики лежит в спектральном интервале 250-380 нм, что увеличивает ее прозрачность в видимой области спектра в сравнении с прототипом.

Совокупность признаков, изложенных в формуле, характеризует оптическую наностеклокерамику с ионами хрома системы Li2O-Al2O3-K2O-В2О3-Sb2O3-Cr2O3. Это позволяет упростить технологию изготовления оптической наностеклокерамики с ионами хрома, уменьшить ее себестоимость и увеличить прозрачность в видимой области спектра.

Изобретение иллюстрируется следующими чертежами, где:

на фиг. 1 показана фотография синтезированного исходного стекла с содержанием Cr2O3 0,1 мол.%;

на фиг. 2 показаны фотографии оптической наностеклокерамики с содержанием Cr2O3 0,1 мол.% (а) и 0,15 мол.% (б) после термической обработки, а также монокристалл синтетического рубина (в);

на фиг. 3 показаны фотографии люминесценции оптической наностеклокерамики после термообработки при Т=630°С в течение 20 минут с содержанием Cr2O3 0,15 мол.% (1) и с содержанием Cr2O3 0,1 мол.% (2), а также люминесценция монокристалла синтетического рубина (3). Длина волны возбуждения люминесценции 365 нм.

на фиг. 4 показаны спектры оптической плотности оптической наностеклокерамики с содержанием Cr2O3 0,15 мол.% (4) и монокристалла синтетического рубина (5).

фиг. 5 показаны: спектры люминесценции оптической наностеклокерамики 6, 7 и синтетического монокристалла рубина 8: 6 - спектр люминесценции образца оптической наностеклокерамики после термической обработки с концентрацией Cr2O3 0,1 мол.%, 7 - спектр люминесценции образца стекла после термической обработки с концентрацией Cr2O3 0,15 мол.%, 8 - спектр люминесценции кристалла синтетического рубина. Длина волны возбуждения люминесценции 360 нм.

Сущность изобретения раскрывается на примере, который не должен рассматриваться экспертом как ограничивающий притязания изобретения.

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1

Для реализации изобретения синтезируют оптическую наностеклокерамику, содержащую ионы трехвалентного хрома, на основе стекла литий-калий-алюмо-боратной системы со следующим составом (мол.%): Li2O 12,5; Al2O3 25,0; K2O 12,5; B2O3 50,0; Sb2O3 1,0; Cr2O3 0,15.

Для синтеза исходного стекла используют реактивы класса ХЧ и ЧДА. Для создания восстановительных условий при синтезе в состав шихты вводят NH4F⋅HF с концентрацией 2.2 мол.%. Плавление шихты осуществляют при температуре 1400-1465°С в воздушной атмосфере, с перемешиванием расплава платиново-родиевой мешалкой. Синтез производят в корундизовых тиглях. При проведении синтеза используют стандартные варочные печи с отливкой в металлические формы и кварцевые или корундизовые тигли. После синтеза проводят отжиг стекла в муфельной печи от 400°С до комнатной температуры. Фотография литий-калиевоалюмоборатного стекла с ионами хрома показана на фиг. 1. Стекло имеет голубую окраску. Для формирования в стекле нанокристаллов Al2O3 с Cr3+ проводят его термическую обработку. Режим термообработки - 630°С в течение 20 минут. Для термообработки используют муфельную печь с программным управлением. На фиг. 2 показаны фотографии синтезированных оптических наностеклокерамик с содержанием Cr2O3 0,1 мол.% (а) и 0,15 мол.% (б) после термической обработки. Для сравнения на фиг. 2 показан синтетический монокристалл рубина (в). Из фиг. 2 видно, что после формирования в наностеклокерамике нанокристаллов Al2O3:Cr3+, она приобретает красный цвет, характерный для ионов Cr3+ в кристаллической матрице. На фиг. 3 показаны фотографии люминесценции образцов синтезированной оптической наностеклокерамики с содержанием Cr2O3 0,15 мол.% (1) и 0,1 мол.% (2) в сравнении с люминесценцией рубина (3). Из фиг. 3 видно, что интенсивность люминесценции в красной области спектра синтезированных образцов наностеклокерамики сравнима с интенсивностью люминесценции синтетического кристалла рубина. На фиг. 4 показан спектр оптической плотности синтезированной оптической наностеклокерамики 4 в сравнении со спектром оптической плотности синтетического кристалла рубина 5. Спектры оптической плотности регистрировались на спектрофотометре Lambda 650 (Perkin Elmer). Из фиг. 4 видно, что в спектре оптической плотности синтезированной оптической наностеклокерамики присутствуют две полосы поглощения, характерные для ионов Cr3+ в кристаллическом окружении. Спектральные измерения показали, что край фундаментальной полосы поглощения синтезированной наностеклокерамики лежит в спектральном интервале 250-380 нм. На фиг. 5 показаны спектры люминесценции синтезированной оптической наностеклокерамики. Спектры люминесценции регистрировались на спектрофлуориметре LS 55 (Perkin Elmer). Из фиг. 5 видно, что спектры люминесценции оптической наностеклокерамики ионами хрома 6 и 7 повторяют спектр люминесценции синтетического кристалла рубина. В то же время, основная полоса люминесценции имеет полуширину в три раза меньшую, чем полуширина полосы люминесценции рубина 8.

Таким образом, исходное стекло для наностеклокерамики синтезируют и отжигают при меньших, по сравнению с прототипом, температурах. Формирование нанокристаллов с ионами хрома в стекле также проводится при меньших, по сравнению с прототипом, температурах. Это упрощает технологию синтеза и снижает его себестоимость. Край фундаментальной полосы поглощения синтезированной наностеклокерамики лежит в спектральном интервале 250-380 нм, что повышает ее пропускание в видимой области спектра, в сравнении с прототипом.

Оптическая наностеклокерамика с ионами хрома, отличающаяся тем, что относится к литий-калий-алюмоборатной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): LiO 0-15,0; AlO 20,0-30,0; KO 10,0-20,0; BO 40,0-60,0; SbO 0-6,0; CrO 0,05-0,2.
Оптическая наностеклокерамика с ионами хрома
Оптическая наностеклокерамика с ионами хрома
Оптическая наностеклокерамика с ионами хрома
Оптическая наностеклокерамика с ионами хрома
Источник поступления информации: Роспатент

Показаны записи 1-10 из 105.
10.01.2015
№216.013.17c3

Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса

Способ относится к лазерной технике и может быть использован для создания устройства прямого самореферентного определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса. Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического...
Тип: Изобретение
Номер охранного документа: 0002537511
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d3d

Способ деперсонализации персональных данных

Изобретение относится к области защиты информации, хранимой в информационных системах персональных данных (ИСПДн), от несанкционированного доступа (НСД) и может быть использовано на стадиях разработки и оптимизации ИСПДн в защищенном исполнении. Техническим результатом является повышение уровня...
Тип: Изобретение
Номер охранного документа: 0002538913
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e16

Волоконно-оптическое устройство для измерения напряженности электрического поля

Изобретение относится к измерительным устройствам на основе волоконно-оптических фазовых поляриметрических датчиков. Оптимизация структуры датчика, обуславливающая возникновение разноименной модуляции показателя преломления при подаче на двухканальный модулятор разности фаз напряжения одной...
Тип: Изобретение
Номер охранного документа: 0002539130
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2349

Способ получения резистивного элемента памяти

Изобретение относится к нанотехнологии и может применяться при изготовлении планарных двухэлектродных резистивных элементов запоминающих устройств. Способ получения резистивного элемента памяти включает в себя создание проводящих электродов на непроводящей подложке, напыление в зазор между...
Тип: Изобретение
Номер охранного документа: 0002540486
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.234c

Способ оценки степени обогатимости минерального сырья оптическим методом и устройство для его реализации

Группа изобретений относится к контрольно-измерительной технике и может быть использовано для предварительной оценки обогатимости руд твердых полезных ископаемых и определения параметров их селекции. Согласно способу определяют полезность и зоны различения каждого минерального объекта из партии...
Тип: Изобретение
Номер охранного документа: 0002540489
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bab

Способ центрировки линзы в оправе и оправа для его осуществления

Способ включает установку линзы на плоский буртик промежуточной части оправы, размещаемой на буртике цилиндрического отверстия основной оправы с возможностью наклона. Вращают основную оправу вокруг ее базовой оси, измеряют биение центра кривизны первой рабочей поверхности линзы относительно оси...
Тип: Изобретение
Номер охранного документа: 0002542636
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.320d

Способ центрировки линзы в оправе и оправа для его осуществления

Способ включает установку линзы сферической рабочей поверхностью на опорный буртик цилиндрического отверстия промежуточной цилиндрической части, размещаемой на опорном буртике цилиндрического отверстия основной оправы. Измеряют биение центра кривизны первой рабочей поверхности относительно оси...
Тип: Изобретение
Номер охранного документа: 0002544288
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3d3b

Способ измерения параметров и характеристик источников излучения

Изобретение относится к измерительной технике и касается способа измерения параметров и характеристик источников излучения. При реализации способа приемник оптического излучения размещают с возможностью перемещения по трем координатам в облучаемой зоне исследуемого источника излучения....
Тип: Изобретение
Номер охранного документа: 0002547163
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4457

Измельчительный механизм волчка

Изобретение относится к пищевой промышленности, а именно к волчкам и мясорубкам. Измельчительный механизм волчка содержит корпус для шнека, шнек с хвостовиком, режущий инструмент, палец для крепления ножей и решеток. При этом в корпусе для шнека и в шнеке выполнены охлаждающие каналы. Каналы...
Тип: Изобретение
Номер охранного документа: 0002548993
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4530

Способ обнаружения объекта на малых дистанциях и устройство для его осуществления

Изобретение относится к области обнаружения в пространстве объектов, к способам и устройствам лазерной локации и может быть использовано в системах обнаружения и распознавания целей, в системах предупреждения столкновения транспортных средств, в навигационных устройствах и в системах охранной...
Тип: Изобретение
Номер охранного документа: 0002549210
Дата охранного документа: 20.04.2015
Показаны записи 1-10 из 19.
10.03.2014
№216.012.a953

Способ формирования серебряных наночастиц в стекле

Способ формирования серебряных наночастиц в стекле относится к технологии оптических материалов и может быть использован в интегральной оптике и биосенсорных технологиях. Способ включает нанесение серебряной пленки на поверхность силикатного стекла, допированного церием, выдерживание полученной...
Тип: Изобретение
Номер охранного документа: 0002509062
Дата охранного документа: 10.03.2014
10.03.2015
№216.013.2faa

Способ записи оптической информации в стекле

Изобретение относится к области оптики и может быть использовано для записи и хранения оптической информации в виде текста, изображений, штрих-кодов и цифровой битовой информации. Целью изобретения является увеличение скорости записи оптической информации в стекле и упрощение состава стекла....
Тип: Изобретение
Номер охранного документа: 0002543670
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.42b6

Волноводный концентратор солнечного элемента

Волноводный концентратор солнечного элемента относится к волноводной и волоконной оптике и может быть использован в солнечных элементах и солнечных батареях с монокристаллическими полупроводниковыми фотоэлектрическими преобразователями. Концентратор солнечного элемента состоит из трех...
Тип: Изобретение
Номер охранного документа: 0002548576
Дата охранного документа: 20.04.2015
10.07.2015
№216.013.5ebb

Голографический коллиматорный прицел

Изобретение относится к коллиматорным оптическим прицелам для легкого стрелкового оружия и предназначено для формирования прицельного знака в бесконечности с помощью голограммного оптического элемента. Голографический коллиматорный содержит последовательно установленные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002555792
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60a2

Чувствительный элемент волоконно-оптического датчика температуры

Изобретение относится к волоконно-оптическим датчикам температуры. Чувствительный элемент выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и ионы редкоземельного металла. Технический результат - увеличение температурной...
Тип: Изобретение
Номер охранного документа: 0002556279
Дата охранного документа: 10.07.2015
10.01.2016
№216.013.9f76

Дозиметр ультрафиолетового излучения

Изобретение относится к радиационным измерениям, в частности к измерениям дозы ультрафиолетового (УФ) излучения, и может быть использовано в медицине, сельском хозяйстве, биотехнологии, обеззараживании объектов, материаловедении, экологии, дефектоскопии, криминалистике, искусствоведении....
Тип: Изобретение
Номер охранного документа: 0002572459
Дата охранного документа: 10.01.2016
27.04.2016
№216.015.3946

Люминесцентный дозиметр ультрафиолетового излучения

Изобретение относится к области радиационных измерений и касается люминесцентного дозиметра ультрафиолетового излучения. Дозиметр включает в себя чувствительный элемент, передающее оптическое волокно, подвижную кассету с оптическими фильтрами и фотоприемное устройство. Чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002582622
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.6d92

Способ получения металлических пленок заданной формы

Изобретение относится к электронно-лучевой технологии и может быть использовано в оптике, фотонике, интегральной оптике, наноплазмонике и электронике. Способ получения металлических пленок заданной формы заключается в том, что на подложку с высоким электрическим сопротивлением предварительно...
Тип: Изобретение
Номер охранного документа: 0002597373
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.c135

Люминесцентное фосфатное стекло

Изобретение относится к люминесцентным материалам. Технический результат изобретения заключается в повышении квантового выхода люминесценции стекол с переходными металлами. Люминесцентное фосфатное стекло содержит, мол.%: NaO – 33, PO– 33, AgO – 0,1, CuO – 0,1 и ZnO – 33,5. 3 ил.
Тип: Изобретение
Номер охранного документа: 0002617662
Дата охранного документа: 25.04.2017
26.08.2017
№217.015.e3b9

Чувствительный элемент датчика температуры

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в диапазоне температур от -50°С до +250°С. Чувствительный элемент датчика температуры содержит диэлектрическую пластину из щелочно-силикатного стекла с металлическими электродами, при этом...
Тип: Изобретение
Номер охранного документа: 0002626222
Дата охранного документа: 24.07.2017
+ добавить свой РИД